cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300442 Number of binary strict trees of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 23, 46, 108, 231, 561, 1285, 3139, 7348, 18265, 43907, 109887, 267582, 675866, 1669909, 4238462, 10555192, 26955062, 67706032, 173591181, 438555624, 1129088048, 2869732770, 7410059898, 18911818801, 48986728672, 125562853003, 326011708368
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

A binary strict tree of weight n > 0 is either a single node of weight n, or an ordered pair of binary strict trees with strictly decreasing weights summing to n.

Examples

			The a(5) = 6 binary strict trees: 5, (41), (32), ((31)1), ((21)2), (((21)1)1).
The a(6) = 10 binary strict trees:
  6,
  (51), (42),
  ((41)1), ((32)1), ((31)2),
  (((31)1)1), (((21)2)1), (((21)1)2),
  ((((21)1)1)1).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(j)*a(n-j), j=1..(n-1)/2)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    k[n_]:=k[n]=1+Sum[Times@@k/@y,{y,Select[IntegerPartitions[n],Length[#]===2&&UnsameQ@@#&]}];
    Array[k,40]
    (* Second program: *)
    a[n_] := a[n] = 1 + Sum[a[j]*a[n - j], {j, 1, (n - 1)/2}];
    a /@ Range[0, 40] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 25 2018

Formula

a(n) = 1 + Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).