A300443 Number of binary enriched p-trees of weight n.
1, 1, 2, 3, 8, 15, 41, 96, 288, 724, 2142, 5838, 17720, 49871, 151846, 440915, 1363821, 4019460, 12460721, 37374098, 116809752, 353904962, 1109745666, 3396806188, 10712261952, 33006706419, 104357272687, 323794643722, 1027723460639, 3204413808420, 10193485256501
Offset: 0
Keywords
Examples
The a(4) = 8 binary enriched p-trees: 4, (31), (22), ((21)1), ((11)2), (2(11)), (((11)1)1), ((11)(11)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; 1+add(a(j)*a(n-j), j=1..n/2) end: seq(a(n), n=0..40); # Alois P. Heinz, Mar 06 2018
-
Mathematica
j[n_]:=j[n]=1+Sum[Times@@j/@y,{y,Select[IntegerPartitions[n],Length[#]===2&]}]; Array[j,40] (* Second program: *) a[n_] := a[n] = 1 + Sum[a[j]*a[n-j], {j, 1, n/2}]; a /@ Range[0, 40] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
-
PARI
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, n\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018
Formula
a(n) = 1 + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y).
Comments