A300451 a(n) = (3*n^2 - 3*n + 8)*2^(n - 3).
1, 2, 7, 26, 88, 272, 784, 2144, 5632, 14336, 35584, 86528, 206848, 487424, 1134592, 2613248, 5963776, 13500416, 30343168, 67764224, 150470656, 332398592, 730857472, 1600126976, 3489660928, 7583301632, 16424894464, 35467034624, 76369887232, 164014063616
Offset: 0
Examples
a(4) = 88. The corresponding words are cccc, cccd, ccdc, ccdd, cdcc, cdcd, cddc, cddd, dccc, dccd, dcdc, dcdd, ddcc, ddcd, dddc, dddd, caac, caca, ccaa, caad, cada, caad, cabc, cacb, ccab, cabd, cadb, cabd, cbac, cbca, ccba, cbad, cbda, cbad, daac, daca, dcaa, daad, dada, daad, dabc, dacb, dcab, dabd, dadb, dabd, dbac, dbca, dcba, dbad, dbda, dbad, aacc, acac, acca, aacd, acad, acda, aadc, adac, adca, aadd, adad, adda, abcc, acbc, accb, abcd, acbd, acdb, abdc, adbc, adcb, abdd, adbd, addb, bacc, bcac, bcca, bacd, bcad, bcda, badc, bdac, bdca, badd, bdad, bdda.
References
- Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015.
- Ian F. Blake, The Mathematical Theory of Coding, Academic Press, 1975.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hermann Gruber, Jonathan Lee and Jeffrey Shallit, Enumerating regular expressions and their languages, arXiv preprint arXiv:1204.4982 [cs.FL], 2012.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Crossrefs
Programs
-
GAP
List([0..30],n->(3*n^2-3*n+8)*2^(n-3)); # Muniru A Asiru, Mar 09 2018
-
Magma
[(3*n^2-3*n+8)*2^(n-3): n in [0..30]]; // Vincenzo Librandi, Mar 10 2018
-
Maple
A := n -> (3*n^2 - 3*n + 8)*2^(n - 3); seq(A(n), n = 0 .. 70);
-
Mathematica
Table[(3 n^2 - 3 n + 8) 2^(n - 3), {n, 0, 70}] CoefficientList[Series[(1 - 4x + 7x^2)/(1 - 2x)^3, {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -12, 8}, {1, 2, 7}, 30] (* Robert G. Wilson v, Mar 07 2018 *)
-
Maxima
makelist((3*n^2 - 3*n + 8)*2^(n - 3), n, 0, 70);
-
PARI
a(n) = (3*n^2-3*n+8)*2^(n-3); \\ Altug Alkan, Mar 09 2018
Formula
G.f.: (1 - 4*x + 7*x^2)/(1 - 6*x + 12*x^2 - 8*x^3).
E.g.f: (1/2)*(3*x^2 + 2)*exp(2*x).
a(n) = ((3/4)*binomial(n, 2) + 1)*2^n.
a(n) = 2*a(n-1) + 3*(n - 1)*2^(n - 2), with a(0) = 1.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), for n >= 3, with a(0) = 1, a(1) = 2 and a(2) = 7.
a(n) = A300184(n,2).
Comments