A300453 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.
0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0
Examples
The triangle T(n,k) begins n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0: 0 0 1 1: 0 1 1 2: 0 2 2 3: 0 3 4 1 4: 0 4 7 4 1 5: 0 5 11 10 5 1 6: 0 6 16 20 15 6 1 7: 0 7 22 35 35 21 7 1 8: 0 8 29 56 70 56 28 8 1 9: 0 9 37 84 126 126 84 36 9 1 10: 0 10 46 120 210 252 210 120 45 10 1 11: 0 11 56 165 330 462 462 330 165 55 11 1 12: 0 12 67 220 495 792 924 792 495 220 66 12 1 13: 0 13 79 286 715 1287 1716 1716 1287 715 286 78 13 1 14: 0 14 92 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1 ... The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams: ____ ____ / \/ \ / /\ \ | | | | | | | | \ \/ / \____/\____/ ___ ____ __________ / \ / \ / __ \ / / \ \ / / \ \ | | | | | | | | | | | | | | | | \ \/ / \ \/ / \_____/\_____/ \____/\____/ ____ ____ ____ ____ ____________ __________ / \ / \ / \ / \ / __ \ / __ \ / / \ \ / / \ \ / / \ \ / / \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | \ \ / / \ \__/ / \ \ / / \ \__/ / \____/ \____/ \____________/ \____/ \____/ \__________/ There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
References
- Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
- Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11327 (rows 0 <= n <= 150, flattened).
- Agnijo Banerjee, Knot theory [Foil knot family].
- Allison Henrich, Rebecca Hoberg, Slavik Jablan, Lee Johnson, Elizabeth Minten and Ljiljana Radovic, The Theory of Pseudoknots, arXiv preprint arXiv:1210.6934 [math.GT], 2012.
- Abdullah Kopuzlu, Abdulgani Şahin and Tamer Ugur, On polynomials of K(2,n) torus knots, Applied Mathematical Sciences, Vol. 3 (2009), 2899-2910.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Wikipedia, Torus knot.
- Xinfei Li, Xin Liu and Yong-Chang Huang, Tackling tangledness of cosmic strings by knot polynomial topological invariants, arxiv preprint arXiv:1602.08804 [hep-th], 2016.
Crossrefs
Row sums: A000079 (powers of 2).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300454 (twist knot).
Programs
-
Mathematica
f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *) CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
-
Maxima
P(n, x) := (x + 1)^n + x^2 - 1$ T : []$ for i:0 thru 20 do T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$ T;
-
PARI
row(n) = Vecrev((x + 1)^n + x^2 - 1); tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
Comments