A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.
0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0
Examples
The triangle T(n,k) begins n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0: 0 1 2 1 1: 0 3 4 1 2: 0 5 8 3 3: 0 7 14 9 2 4: 0 9 22 21 10 2 5: 0 11 32 41 30 12 2 6: 0 13 44 71 70 42 14 2 7: 0 15 58 113 140 112 56 16 2 8: 0 17 74 169 252 252 168 72 18 2 9: 0 19 92 241 420 504 420 240 90 20 2 10: 0 21 112 331 660 924 924 660 330 110 22 2 11: 0 23 134 441 990 1584 1848 1584 990 440 132 24 2 12: 0 25 158 573 1430 2574 3432 3432 2574 1430 572 156 26 2 13: 0 27 184 729 2002 4004 6006 6864 6006 4004 2002 728 182 28 2
References
- Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.
Links
- Agnijo Banerjee, Knot theory.
- Răzvan Gelca and Fumikazu Nagasato,Some results about the kauffman bracket skein module of the twist knot exterior, J. Knot Theory Ramifications 15 (2006), 1095-1106.
- L. H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14: Iss. 2, Article 7 (2013).
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv preprint arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Alexander Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, Volume 310, Issue 2 (2007), 491-525.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Wikipedia, Twist knot.
Crossrefs
Programs
-
Maxima
P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$ T : []$ for i:0 thru 20 do T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$ T;
-
PARI
row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2); tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
Formula
T(n,1) = A005408(n).
T(n,2) = A014206(n).
T(n,3) = A064999(n+1).
T(n,1) + T(n,2) = A002061(n+2).
T(n,1) + T(n,3) = A046127(n+1).
T(n,2) + T(n,3) = A155753(n+1).
T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).
Comments