cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300662 Expansion of 1/(1 - x - Sum_{k>=2} prime(k-1)*x^k).

Original entry on oeis.org

1, 1, 3, 8, 22, 59, 160, 429, 1155, 3105, 8354, 22474, 60457, 162636, 437509, 1176941, 3166097, 8517138, 22912002, 61635707, 165806564, 446037175, 1199887133, 3227823181, 8683185454, 23358686444, 62837334885, 169039070970, 454732963567, 1223279724439, 3290751724917
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2018

Keywords

Comments

Invert transform of A008578.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
         `if`(j=1, 1, ithprime(j-1))*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(1 - x - Sum[Prime[k - 1] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A008578(k)*x^k).