cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110540 Invertible triangle: T(n,k) = number of k-ary Lyndon words of length n-k+1 with trace 1 modulo k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 3, 2, 1, 0, 3, 6, 5, 2, 1, 0, 5, 16, 16, 8, 3, 1, 0, 9, 39, 51, 30, 12, 3, 1, 0, 16, 104, 170, 125, 54, 16, 4, 1, 0, 28, 270, 585, 516, 259, 84, 21, 4, 1, 0, 51, 729, 2048, 2232, 1296, 480, 128, 27, 5, 1, 0, 93, 1960, 7280, 9750, 6665, 2792, 819, 180, 33, 5, 1
Offset: 1

Views

Author

Paul Barry, Jul 25 2005

Keywords

Comments

An invertible number triangle related to Lyndon words of trace 1.

Examples

			Rows begin
  1;
  0,  1;
  0,  1,   1;
  0,  1,   1,    1;
  0,  2,   3,    2,    1;
  0,  3,   6,    5,    2,    1;
  0,  5,  16,   16,    8,    3,   1;
  0,  9,  39,   51,   30,   12,   3,   1;
  0, 16, 104,  170,  125,   54,  16,   4,  1;
  0, 28, 270,  585,  516,  259,  84,  21,  4, 1;
  0, 51, 729, 2048, 2232, 1296, 480, 128, 27, 5, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:=Sum[Boole[GCD[d, k] == 1]  MoebiusMu[d] k^((n - k + 1)/d), {d, Divisors[n - k + 1]}] /(k(n - k + 1)); Flatten[Table[T[n, k], {n, 12}, {k, n}]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(n=1, 11, for(k=1, n, print1( sum(d=1,n-k+1, if(Mod(n-k+1, d)==0 && gcd(d, k)==1, moebius(d)*k^((n-k+1)/d), 0)/(k*(n-k+1)) ),", ");); print();) \\ Andrew Howroyd, Mar 26 2017

Formula

T(n, k) = (Sum_{d | n-k+1, gcd(d, k)=1} mu(d)*k^((n-k+1)/d))/(k*(n-k+1)).

Extensions

Name clarified by Andrew Howroyd, Mar 26 2017

A300675 Number of monic irreducible polynomials of degree n over GF(16) that have a given nonzero trace.

Original entry on oeis.org

1, 8, 85, 1024, 13107, 174760, 2396745, 33554432, 477218560, 6871947672, 99955602525, 1466015503360, 21651921285435, 321685687669320, 4803839602524143, 72057594037927936, 1085102592571150095, 16397105843297320960, 248545604361560274405, 3777893186295716170752, 57567896172125197996605
Offset: 1

Views

Author

Seiichi Manyama, Mar 11 2018

Keywords

Crossrefs

Column 16 of A110540.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] * 16^(n/#) &, OddQ[#] &] / (16*n); Array[a, 21] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (d%2, moebius(d)*16^(n/d)))/(16*n); \\ Michel Marcus, Mar 11 2018

Formula

a(n) = (1/(16*n)) * Sum_{odd d divides n} mu(d)*16^(n/d), where mu is the Möbius function A008683.
Showing 1-2 of 2 results.