cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300704 Number of compositions (ordered partitions) of n into prime power parts (not including 1) that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 0, 7, 2, 7, 5, 46, 2, 115, 20, 39, 16, 723, 16, 1819, 27, 559, 414, 11481, 16, 13204, 1763, 6450, 383, 181548, 172, 455646, 1326, 70476, 29809, 571110, 275, 7203906, 121535, 739513, 1703, 45380391, 7362, 113898438, 65049, 757426, 2009203, 717490902, 2304
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Examples

			a(10) = 5 because we have [7, 3], [4, 3, 3], [3, 7], [3, 4, 3] and [3, 3, 4].
		

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n) option
          remember; `if`(n=0, 1, add(`if`(nops(ifactors(j)[2])
           <>1 or irem(m, j)=0, 0, b(n-j)), j=2..n)) end; b(m)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Mar 11 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && PrimePowerQ[k]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 48}]

A300706 Number of compositions (ordered partitions) of n into squarefree parts that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 0, 5, 2, 5, 2, 27, 2, 67, 12, 16, 28, 366, 4, 848, 28, 182, 153, 4591, 20, 4172, 554, 2217, 558, 57695, 6, 134118, 3834, 14629, 6972, 97478, 258, 1684852, 24467, 120869, 5308, 9104710, 189, 21165023, 124427, 117017, 297830, 114373157, 3394, 126979537, 72158, 7655405
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Examples

			a(18) = 4 because we have [13, 5], [11, 7], [7, 11] and [5, 13].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(m) option remember; local b; b:= proc(n) option
          remember; `if`(n=0, 1, add(`if`(not issqrfree(j) or
           irem(m, j)=0, 0, b(n-j)), j=2..n)) end; b(m)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Mar 11 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && SquareFreeQ[k]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 51}]

A300715 Number of compositions (ordered partitions) of n into squares that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 3, 0, 0, 7, 6, 0, 0, 14, 10, 4, 0, 22, 20, 10, 0, 32, 39, 20, 0, 49, 70, 42, 0, 12, 116, 88, 0, 128, 156, 174, 11, 207, 3, 320, 0, 333, 551, 575, 0, 555, 914, 0, 0, 959, 1502, 1829, 44, 1691, 2486, 3192, 0, 3000, 4172, 4005
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Examples

			a(21) = 4 because we have [9, 4, 4, 4], [4, 9, 4, 4], [4, 4, 9, 4] and [4, 4, 4, 9].
		

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n) option
          remember; `if`(n=0, 1, add((s->`if`(s>n or irem(m, s)
           =0, 0, b(n-s)))(j^2), j=2..isqrt(n))) end; b(m)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 11 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 75}]
Showing 1-3 of 3 results.