cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300710 Decimal expansion of 17*Pi^8/161280.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 5, 1, 7, 9, 0, 2, 5, 2, 9, 6, 1, 1, 9, 3, 0, 2, 9, 8, 7, 2, 4, 9, 2, 9, 5, 7, 2, 8, 0, 4, 1, 5, 6, 6, 5, 4, 2, 9, 7, 5, 0, 6, 1, 3, 7, 4, 0, 4, 3, 6, 8, 7, 1, 9, 9, 6, 1, 5, 9, 2, 3, 4, 7, 1, 3, 0, 0, 4, 1, 6, 2, 5, 3, 7, 0, 1, 8, 3, 9, 0, 5, 5, 6, 3, 9, 6, 2, 8, 7, 2, 9, 8, 9, 3, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).

Examples

			1.0001551790252961193029872492957280415665429750613740...
		

Crossrefs

Programs

  • MATLAB
    format long; (17/161280)*pi^8
  • Maple
    evalf((17/161280)*Pi^8, 120);
  • Mathematica
    RealDigits[(17/161280)*Pi^8, 10, 120][[1]]
  • PARI
    default(realprecision, 120); (17/161280)*Pi^8
    

Formula

Equals 17*A092736/161280. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,8).
Equals DirichletL(4,1,8).
Equals DirichletL(8,1,8).
Equals DirichletL(16,1,8). (End)
Equals 255*Zeta(8)/256. - Jason Bard, Aug 21 2025