A300715 Number of compositions (ordered partitions) of n into squares that do not divide n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 3, 0, 0, 7, 6, 0, 0, 14, 10, 4, 0, 22, 20, 10, 0, 32, 39, 20, 0, 49, 70, 42, 0, 12, 116, 88, 0, 128, 156, 174, 11, 207, 3, 320, 0, 333, 551, 575, 0, 555, 914, 0, 0, 959, 1502, 1829, 44, 1691, 2486, 3192, 0, 3000, 4172, 4005
Offset: 0
Keywords
Examples
a(21) = 4 because we have [9, 4, 4, 4], [4, 9, 4, 4], [4, 4, 9, 4] and [4, 4, 4, 9].
Links
Programs
-
Maple
a:= proc(m) option remember; local b; b:= proc(n) option remember; `if`(n=0, 1, add((s->`if`(s>n or irem(m, s) =0, 0, b(n-s)))(j^2), j=2..isqrt(n))) end; b(m) end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 11 2018
-
Mathematica
Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && IntegerQ[k^(1/2)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 75}]