cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300717 Möbius transform of A003557, n divided by its largest squarefree divisor.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2018

Keywords

Comments

Multiplicative because A003557 is. - Andrew Howroyd, Jul 27 2018

Crossrefs

Programs

  • Maple
    with(numtheory): A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
    seq(add(mobius(d)*A003557(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 18 2019
  • Mathematica
    Table[DivisorSum[n, MoebiusMu[#] EulerPhi[#] EulerPhi[n/#] &], {n, 108}] (* Michael De Vlieger, Nov 18 2019 *)
    f[p_, e_] := If[e == 1, 0, (p - 1)*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 06 2022 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); }; \\ From A003557
    A300717(n) = sumdiv(n,d,moebius(n/d)*A003557(d));
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 0, (f[i,1] - 1)*f[i,1]^(f[i,2] - 2)));} \\ Amiram Eldar, Dec 06 2022

Formula

a(n) = Sum_{d|n} A008683(n/d)*A003557(d).
a(n) = A000010(n) - A300718(n).
a(n) = A003557(n) - A300719(n).
Multiplicative with a(p) = 0 and a(p^e) = (p-1)*p^(e-2) for prime p and e>1. - Werner Schulte, Sep 27 2018
Dirichlet convolution with A003958 equals A000010. - Werner Schulte, Sep 28 2018
a(n) = Sum_{d|n} mu(d)*phi(d)*phi(n/d). - Ridouane Oudra, Nov 18 2019
Dirichlet convolution of A000010 and A097945. - R. J. Mathar, Jun 02 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)).
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(n/gcd(n,k)). (End)