A300717 Möbius transform of A003557, n divided by its largest squarefree divisor.
1, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Maple
with(numtheory): A003557 := n -> n/ilcm(op(numtheory[factorset](n))): seq(add(mobius(d)*A003557(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 18 2019
-
Mathematica
Table[DivisorSum[n, MoebiusMu[#] EulerPhi[#] EulerPhi[n/#] &], {n, 108}] (* Michael De Vlieger, Nov 18 2019 *) f[p_, e_] := If[e == 1, 0, (p - 1)*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 06 2022 *)
-
PARI
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); }; \\ From A003557 A300717(n) = sumdiv(n,d,moebius(n/d)*A003557(d));
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 0, (f[i,1] - 1)*f[i,1]^(f[i,2] - 2)));} \\ Amiram Eldar, Dec 06 2022
Formula
Multiplicative with a(p) = 0 and a(p^e) = (p-1)*p^(e-2) for prime p and e>1. - Werner Schulte, Sep 27 2018
a(n) = Sum_{d|n} mu(d)*phi(d)*phi(n/d). - Ridouane Oudra, Nov 18 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(gcd(n,k)).
a(n) = Sum_{k=1..n} phi(gcd(n,k))*mu(n/gcd(n,k)). (End)
Comments