cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A300835 Restricted growth sequence transform of A300834, product_{d|n, dA019565(A003714(d)); Filter sequence related to Zeckendorf-representations of proper divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 7, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 56, 57, 2, 58, 59, 60, 2, 61, 41, 62, 63, 64, 2, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A001065(i) = A001065(j).
For all i, j: a(i) = a(j) => A300836(i) = A300836(j).

Examples

			For cases n=10 and 49, we see that 10 has proper divisors 1, 2 and 5 and these have Zeckendorf-representations (A014417) 1, 10 and 1000, while 49 has proper divisors 1 and 7 and these have Zeckendorf-representations 1 and 1010. When these Zeckendorf-representations are summed (columnwise without carries), result in both cases is 1011, thus a(10) = a(49).
		

Crossrefs

Cf. also A293215, A293217, A293223, A293224, A293232, A300833 for similar filtering sequences.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A300834(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A003714(d)))); m; };
    write_to_bfile(1,rgs_transform(vector(up_to,n,A300834(n))),"b300835.txt");

A293214 a(n) = Product_{d|n, dA019565(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 36, 2, 30, 12, 60, 2, 2700, 2, 180, 120, 210, 2, 7560, 2, 6300, 360, 252, 2, 661500, 20, 420, 168, 94500, 2, 23814000, 2, 2310, 504, 132, 600, 43659000, 2, 396, 840, 2425500, 2, 187110000, 2, 207900, 352800, 1980, 2, 560290500, 60, 194040, 264, 485100, 2, 115259760, 840, 254677500, 792, 4620, 2, 264737261250000, 2, 13860
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A001065, A002110, A019565, A048675, A091954, A292257, A293215 (restricted growth sequence transform).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A293214(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d).
a(n) = A300830(n) * A300831(n) * A300832(n). - Antti Karttunen, Mar 16 2018
Other identities.
For n >= 0, a(2^n) = A002110(n).
For n >= 1:
A048675(a(n)) = A001065(n).
A001222(a(n)) = A292257(n).
A007814(a(n)) = A091954(n).
A087207(a(n)) = A218403(n).
A248663(a(n)) = A227320(n).

A300836 a(n) is the total number of terms (1-digits) in Zeckendorf representation of all proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 4, 3, 5, 1, 7, 1, 7, 4, 4, 1, 11, 2, 3, 4, 8, 1, 10, 1, 7, 4, 5, 4, 14, 1, 5, 3, 11, 1, 10, 1, 8, 7, 4, 1, 15, 3, 8, 5, 7, 1, 12, 4, 12, 5, 4, 1, 21, 1, 5, 7, 10, 3, 13, 1, 8, 4, 11, 1, 19, 1, 4, 8, 10, 5, 10, 1, 16, 7, 5, 1, 20, 5, 5, 4, 12, 1, 20, 4, 10, 5, 4, 5, 21, 1, 9, 10, 16, 1, 13, 1, 11, 10
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2018

Keywords

Examples

			For n=12, its proper divisors are 1, 2, 3, 4 and 6. Zeckendorf-representations (A014417) of these numbers are 1, 10, 100, 101 and 1001. Total number of 1's present is 7, thus a(12) = 7.
		

Crossrefs

Programs

  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A300836(n) = sumdiv(n,d,(dA007895(d));

Formula

a(n) = Sum_{d|n, dA007895(d).
a(n) = A300837(n) - A007895(n).
a(n) = A001222(A300834(n)).
For all n >=1, a(n) >= A293435(n).

A318834 a(n) = Product_{d|n, dA019565(phi(d)), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 12, 6, 20, 2, 108, 2, 60, 30, 60, 2, 540, 2, 300, 90, 84, 2, 2700, 10, 140, 90, 2700, 2, 6300, 2, 420, 126, 44, 150, 121500, 2, 132, 210, 10500, 2, 283500, 2, 5292, 3150, 660, 2, 132300, 30, 5500, 66, 14700, 2, 267300, 210, 472500, 198, 1540, 2, 4630500, 2, 4620, 47250, 4620, 350, 873180, 2, 1452, 990
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Crossrefs

Cf. A000010, A019565, A318835 (rgs-transform).
Cf. also A293214, A293231, A300834.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A318834(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(eulerphi(d)))); m; };

Formula

a(n) = Product_{d|n, dA019565(A000010(d)).
A048675(a(n)) = A051953(n).

A318469 Multiplicative with a(p^e) = A019565(A003714(e)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 10, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 7, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 20, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 14, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 20, 10, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 14, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Crossrefs

Programs

  • PARI
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A318469(n) = factorback(apply(e -> A019565(A003714(e)),factor(n)[,2]));

Formula

For all n >= 1, A001222(a(n)) = A318464(n).

A319708 a(n) = Product_{d|n, dA276086(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 36, 2, 54, 12, 108, 2, 1620, 2, 60, 216, 810, 2, 5400, 2, 43740, 120, 540, 2, 607500, 36, 300, 360, 40500, 2, 21870000, 2, 182250, 1080, 2700, 360, 151875000, 2, 1500, 600, 246037500, 2, 101250000, 2, 5467500, 972000, 13500, 2, 85429687500, 20, 6075000, 5400, 5062500, 2, 2531250000, 3240, 3417187500, 3000, 67500, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A276085, A276086, A319709 (rgs-transform).
Cf. A293214, A293221, A293222, A300834 for similar constructions for other bases.

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A319708(n) = { my(m=1); fordiv(n, d, if(dA276086(d))); (m); };

Formula

a(n) = Product_{d|n, dA276086(d).
For all n >= 1:
A276085(a(n)) = A001065(n).
A001222(a(n)) = A319713(n).
Showing 1-6 of 6 results.