cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300931 a(n) is the number of Klein four orbits of permutations generated by the operations of inverse permutation and conjugation by w_0 = [n, n-1, ..., 1].

Original entry on oeis.org

1, 1, 2, 4, 13, 45, 230, 1388, 10558, 92126, 912908, 9998008, 119831996, 1557050972, 21795929320, 326923928048, 5230723155848, 88921965504136, 1600593971537552, 30411277553507360, 608225514852464848, 12772735603832679248, 281000182274281641056
Offset: 0

Views

Author

Sara Billey, Philippe Nadeau, Jordan Weaver, Jesse Rivera, Justin Shyi, Mar 15 2018

Keywords

Examples

			For n=3, the a(3)=4 orbits are {(1,2,3)}, {(1,3,2),(2,1,3)}, {(2,3,1),(3,1,2)}, and {(3,2,1)}.
		

Crossrefs

Cf. A001475.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<6, [1$2, 2, 4, 13, 45][n+1],
          ((15*n^2+11*n-161)*a(n-1)-(19*n^2-100*n+65)*a(n-2)
           -(30*n^3-87*n^2-81*n+266)*a(n-3)+68*(n-2)*(n-3)^2*a(n-4)
           +(n-3)*(n-4)*(15*n^2-23*n-16)*a(n-5)-2*(17*n-33)*(n-3)*
           (n-4)*(n-5)*a(n-6))/(15*n-38))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 30 2018
  • Mathematica
    Table[(n! + (2 Floor[n/2])!! + 2 + 2 Sum[Product[Binomial[n - 2 j, 2], {j, 0, k - 1}]/k!, {k, Floor[n/2]}])/4, {n, 22}] (* Michael De Vlieger, Mar 16 2018 *)
    Table[(n! + (2*Floor[n/2])!!)/4 + I^(1 - n) * 2^((n - 3)/2) * HypergeometricU[(1 - n)/2, 3/2, -1/2], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2020 *)

Formula

a(n) = (n! + (2*floor(n/2))!! + 2 + 2*Sum_{k=1..floor(n/2)} (Product_{j=0..k-1} binomial(n-2j,2))/k!)/4.
For n > 1, a(n) = (n! + (2*floor(n/2))!!)/4 + A001475(n-1). - Vaclav Kotesovec, May 19 2020

Extensions

a(19)-a(22) from Michael De Vlieger, Mar 16 2018
a(0)=1 prepended by Alois P. Heinz, Mar 30 2018