A300949 Carmichael numbers whose prime factors form an arithmetic progression.
1729, 2465, 29341, 294409, 1152271, 1857241, 6189121, 19384289, 56052361, 64377991, 118901521, 172947529, 216821881, 228842209, 625482001, 775368901, 1213619761, 1299963601, 2301745249, 4562359201, 8346731851, 9293756581, 9624742921, 9701285761, 11346205609, 13079177569, 13946829751, 14386156093
Offset: 1
Keywords
Examples
29341 = 13*37*61 is a Carmichael number, and [13, 37, 61] is an arithmetic progression of length 3 and with common difference of 37 - 13 = 61 - 37 = 24. We have 37 = (13 + 61)/2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier; terms 1..3841 from Max Alekseyev)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- R. G. E. Pinch, Tables relating to Carmichael numbers.
Programs
-
Maple
# using Richard Pinch data file carmichael-16 cfile:= "carmichael-16": Res:= NULL: do S:= readline(cfile); if S = 0 then break fi; L:= map(parse, StringTools:-Split(S)); R:= sort(L[2..-1]); d:= (R[-1]-R[1])/(nops(R)-1); if R = [seq(i,i=R[1]..R[-1],d)] then Res:= Res, L[1]; fi od: fclose(cfile): Res;
-
Mathematica
Select[Cases[Range[1, 10^7, 2], ?(And[Mod[#, CarmichaelLambda@ #] == 1, ! PrimeQ[#]] &)], Length@ Union@ Differences@ FactorInteger[#][[All, 1]] == 1 &] (* _Michael De Vlieger, Mar 17 2018, after Artur Jasinski at A002997 *)
Comments