A301896 a(n) = product of total number of 0's and total number of 1's in binary expansions of 0, ..., n.
0, 1, 4, 8, 20, 35, 54, 72, 117, 165, 221, 280, 352, 425, 504, 576, 726, 875, 1036, 1200, 1386, 1575, 1776, 1976, 2214, 2451, 2700, 2944, 3216, 3479, 3750, 4000, 4455, 4897, 5355, 5808, 6300, 6789, 7296, 7800, 8364, 8925, 9504, 10080, 10695, 11305, 11931, 12544, 13260, 13965, 14688
Offset: 0
Examples
+---+-----+---+---+---+---+----------+ | n | bin.|0's|sum|1's|sum| a(n) | +---+-----+---+---+---+---+----------+ | 0 | 0 | 1 | 1 | 0 | 0 | 1*0 = 0 | | 1 | 1 | 0 | 1 | 1 | 1 | 1*1 = 1 | | 2 | 10 | 1 | 2 | 1 | 2 | 2*2 = 4 | | 3 | 11 | 0 | 2 | 2 | 4 | 2*4 = 8 | | 4 | 100 | 2 | 4 | 1 | 5 | 4*5 = 20 | | 5 | 101 | 1 | 5 | 2 | 7 | 5*7 = 35 | | 6 | 110 | 1 | 6 | 2 | 9 | 6*9 = 54 | +---+-----+---+---+---+---+----------+ bin. - n written in base 2; 0's - number of 0's in binary expansion of n; 1's - number of 1's in binary expansion of n; sum - total number of 0's (or 1's) in binary expansions of 0, ..., n.
Links
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1, 0], b(n-1)+ (l-> [add(1-i, i=l), add(i, i=l)])(Bits[Split](n))) end: a:= n-> (l-> l[1]*l[2])(b(n)): seq(a(n), n=0..50); # Alois P. Heinz, Mar 01 2023
-
Mathematica
Accumulate[DigitCount[Range[0, 50], 2, 0]] Accumulate[DigitCount[Range[0, 50], 2, 1]]
-
Python
def A301896(n): return (2+(n+1)*(m:=(n+1).bit_length())-(1<
Chai Wah Wu, Mar 01 2023 -
Python
def A301896(n): return (a:=(n+1)*n.bit_count()+(sum((m:=1<
>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1))*(2+(n+1)*(t:=(n+1).bit_length())-(1< Chai Wah Wu, Nov 11 2024
Comments