cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302404 Total domination number of the n-Moebius ladder.

Original entry on oeis.org

0, 2, 2, 2, 3, 4, 4, 6, 6, 6, 7, 8, 8, 10, 10, 10, 11, 12, 12, 14, 14, 14, 15, 16, 16, 18, 18, 18, 19, 20, 20, 22, 22, 22, 23, 24, 24, 26, 26, 26, 27, 28, 28, 30, 30, 30, 31, 32, 32, 34, 34, 34, 35, 36, 36, 38, 38, 38, 39, 40, 40, 42, 42, 42, 43, 44, 44, 46, 46, 46, 47
Offset: 0

Views

Author

Eric W. Weisstein, Apr 07 2018

Keywords

Comments

Extended to a(0)-a(2) using the formula/recurrence.

Crossrefs

Programs

  • Magma
    I:=[2,2,2,3,4,4,6]; [0] cat [n le 7 select I[n] else Self(n-1) + Self(n-6) - Self(n-7): n in [1..50]]; // G. C. Greubel, Apr 09 2018
  • Mathematica
    Table[(3 - (-1)^n + 4 n + Cos[n Pi/3] - 3 Cos[2 n Pi/3] + Sqrt[3] Sin[n Pi/3] + Sin[2 n Pi/3]/Sqrt[3])/6, {n, 0, 20}]
    LinearRecurrence[{1,0,0,0,0,1,-1}, {2,2,2,3,4,4,6}, {0, 50}]
    CoefficientList[Series[x (2 + x^3 + x^4)/((-1 + x)^2 (1 + x + x^2 + x^3 + x^4 + x^5)), {x, 0, 20}], x]
  • PARI
    x='x+O('x^50); concat(0, Vec(x*(2+x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4+x^5)))) \\ G. C. Greubel, Apr 09 2018
    

Formula

a(n) = (3 - (-1)^n + 4*n + cos(n*Pi/3) - 3*cos(2*n*Pi/3) + sqrt(3)*sin(n*Pi/3) + sin(2*n*Pi/3)/sqrt(3))/6.
a(n) = a(n-1) + a(n-6) - a(n-7).
G.f.: x*(2 + x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5)).
a(n) = a(n-6) + 4. - Andrew Howroyd, Apr 18 2018
a(n) = a(n-6*k) + 4*k. - Eric W. Weisstein, Apr 23 2018

A301426 Number of steps required in the worst case for three knights to find the princess in a castle with n rooms arranged in a line (Castle and princess puzzle).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 8, 8
Offset: 1

Views

Author

Dmitry Kamenetsky, Mar 21 2018

Keywords

Comments

The main entry for this problem is A300576. In this version there are three knights who are searching for the princess; each knight can search a different room.

Crossrefs

Formula

It seems that for n >= 3:
if n = 3 mod 5, then a(n) = (n - 3)/5*2 + 1,
otherwise a(n) = floor((n - 4)/5)*2 + 2.
This conjecture is a(n) = A194222(n) for n>2. - R. J. Mathar, Mar 27 2025
Showing 1-2 of 2 results.