A301371 Maximum determinant of an n X n matrix with n copies of the numbers 1 .. n.
1, 1, 3, 18, 160, 2325, 41895, 961772, 27296640, 933251220
Offset: 0
Examples
Matrices with maximum determinants: a(2) = 3: (2 1) (1 2) a(3) = 18: (3 1 2) (2 3 1) (1 2 3) a(4) = 160: (4 3 2 1) (1 4 3 2) (3 1 4 3) (2 2 1 4) a(5) = 2325: (5 3 1 2 4) (2 5 4 1 3) (4 1 5 3 2) (3 4 2 5 1) (1 2 3 4 5) a(6) = 41895: (6 1 4 2 3 5) (3 6 2 1 5 4) (4 5 6 3 2 1) (5 3 1 6 4 2) (1 2 5 4 6 3) (2 4 3 5 1 6) a(7) = 961772: (7 2 3 5 1 4 6) (3 7 6 4 2 1 5) (2 1 7 6 4 5 3) (4 5 1 7 6 3 2) (6 3 5 1 7 2 4) (5 6 4 2 3 7 1) (1 4 2 3 5 6 7) a(8) = 27296640: (8 8 3 5 4 3 4 1) (1 8 6 3 1 6 6 5) (5 3 8 1 7 6 4 2) (5 1 6 8 2 4 7 3) (1 5 2 7 8 6 4 3) (7 3 2 4 3 8 2 7) (5 4 2 2 6 2 8 7) (4 5 7 6 5 1 1 7) a(n) is an upper bound for the determinant of an n X n Latin square. a(n) = A309985(n) for n <= 7. a(8) > A309985(8). - _Hugo Pfoertner_, Aug 26 2019 From _Hugo Pfoertner_, Nov 04 2020: (Start) a(9) = 933251220, achieved by a Non-Latin square: (9 5 5 3 3 2 2 8 8) (4 9 2 6 7 5 3 1 8) (4 7 9 2 1 8 6 3 5) (6 3 7 9 4 1 8 2 5) (6 2 8 5 9 7 1 4 3) (7 4 1 8 2 9 5 6 3) (7 6 3 1 8 4 9 5 2) (1 8 6 7 5 3 4 9 2) (1 1 4 4 6 6 7 7 9) found by Oleg Vlasii as an answer to the IBM Ponder This Challenge November 2019. See links. (End)
Links
- Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008.
- IBM Research, Large 9x9 determinant, Ponder This Challenge November 2019.
- Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.
- Oleg Vlasii, Determinant-OEIS-A301371-9, program and description, 4 Dec 2019.
- Index entries for sequences related to maximal determinants
Formula
Extensions
a(8) from Hugo Pfoertner, Aug 26 2019
a(9) from Hugo Pfoertner, Nov 04 2020
Comments