A301383 Expansion of (1 + 3*x - 2*x^2)/(1 - 7*x + 7*x^2 - x^3).
1, 10, 61, 358, 2089, 12178, 70981, 413710, 2411281, 14053978, 81912589, 477421558, 2782616761, 16218279010, 94527057301, 550944064798, 3211137331489, 18715879924138, 109084142213341, 635788973355910, 3705649697922121, 21598109214176818, 125883005587138789, 733699924308655918
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..1304
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Crossrefs
Programs
-
Julia
using Nemo function A301383List(len) R, x = PowerSeriesRing(ZZ, len+2, "x") f = divexact(1+3*x-2*x^2, 1-7*x+7*x^2-x^3) [coeff(f, k) for k in 0:len] end A301383List(23) |> println # Peter Luschny, Mar 21 2018
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3))); -
Maple
f:= gfun:-rectoproc({a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3), a(0)=1,a(1)=10,a(2)=61},a(n),remember): map(f, [$0..50]); # Robert Israel, Mar 21 2018
-
Mathematica
CoefficientList[Series[(1 + 3 x - 2 x^2)/(1 - 7 x + 7 x^2 - x^3), {x, 0, 30}], x]
-
Maxima
makelist(coeff(taylor((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3), x, 0, n), x, n), n, 0, 30);
-
PARI
Vec((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3)+O(x^30))
-
Sage
m=30; L.
= PowerSeriesRing(ZZ, m); f=(1+3*x-2*x^2)/(1-7*x+7*x^2-x^3); print(f.coefficients())
Formula
O.g.f.: (1 + 3*x - 2*x^2)/((1 - x)*(1 - 6*x + x^2)).
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) = 6*a(n-1) - a(n-2) + 2.
a(n) = (3/4)*((1 + sqrt(2))^(2*n + 1) + (1 - sqrt(2))^(2*n + 1)) - 1/2.
2*a(n) = 3*A002315(n) - 1.
4*a(n) = 3*A077444(n+1) - 2.
E.g.f.: (3*exp(3*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - cosh(x) - sinh(x))/2. - Stefano Spezia, Mar 06 2020
Let T(n) be the n-th triangular number, A000217(n). Then T(a(n)-3) + 2*T(a(n)-2) + 3*T(a(n)-1) + 4*T(a(n)) + 3*T(a(n)+1) + 2*T(a(n)+2) + T(a(n)+3) = (A001653(n) + A001653(n+2))^2. - Charlie Marion, Mar 16 2021
Comments