A301414 Distinct terms of A301413 in ascending order: terms k in A301413 that have at least one number m such that k * A002110(m) is a highly composite number (A002182) with m distinct prime factors.
1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 216, 240, 288, 360, 480, 576, 720, 1080, 1440, 2160, 2880, 4320, 5040, 7200, 7560, 8640, 10080, 14400, 15120, 20160, 30240, 40320, 50400, 60480, 90720, 100800, 120960, 151200, 181440, 241920, 302400, 362880
Offset: 1
Keywords
Examples
Plot of (n,k) with n in A002110 and k a term in this sequence such that A002110(n) * k is in A002182. Asterisks denote products that are in A002201. {0,1} {1,1} {2,1} 1 2* 6* {1,2} {2,2} {3,2} 4 12* 60* {2,4} {3,4} {4,4} 24 120* 840 {2,6} {3,6} {4,6} 36 180 1260 {2,8} {3,8} {4,8} 48 240 1680 {3,12} {4,12} {5,12} 360* 2520* 27720 {3,24} {4,24} {5,24} {6,24} 720 5040* 55440* 720720* {4,36} {5,36} {6,36} 7560 83160 1081080 {4,48} {5,48} {6,48} 10080 110880 1441440* ... ... ... ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..8000
- Michael De Vlieger, On a graph of highly composite numbers
- Michael De Vlieger, Plot of 779674 HCNs as A002110(y) * A301414(x) at (x,y).
- A. Flammenkamp, Highly composite numbers
Programs
-
Mathematica
(* First load b-file from A002182 minus any comments therein *) s = Import["b002182.txt","Data"][[All,-1]]; (* Alternatively, download Flammenkamp dataset, decompress and rename to "HCN.txt", then decode using the following in place of s above *) s = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[Drop[StringSplit@ #, 2], 1] & /@ Import["HCN.txt", "Data"]; Union@ Array[#1/Product[Prime@ i, {i, #2}] & @@ {#, PrimeNu@ #} &@ s[[#]] &, Length@ s]
Comments