cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301417 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.

Original entry on oeis.org

1, 4, 19, 98, 516, 2725, 14400, 76105, 402229, 2125864, 11235643, 59382770, 313850616, 1658767513, 8766940464, 46335152161, 244891172089, 1294302130684, 6840663104371, 36154365042098, 191083538489436, 1009917298758493, 5337628549243344, 28210506508524169
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 20 2018

Keywords

Comments

Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 4 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/4)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.)
More precisely, given a finite collection X:=(x(i), i =1..n) of data, the Girard-Waring formulae express the sum of the k-th powers of the data, S_k(X):=Sum(x(i)^k, i=1..n), in terms of the elementary symmetric polynomials in the data. The j-th elementary symmetric polynomial is s_j(X):=Sum(Product(x(i), x(i) in X_0), X_0 \subseteq X, where |X_0|=j). So the Girard-Waring formulae provide coefficients a(J,k) such that S_k(X)=Sum(a(J,k)*Product(s_j(X), j \in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). [Thus J is an integer partition of k.] By "mean powers" I mean T_k(X):=Sum(x(i)^k, i=1..n)/n. By the "mean symmetric polynomials" I mean t_j(X):=s_j(X)/binomial(n,j). The Girard-Waring mean formulae then provide coefficients b(J,k,n) such that T_k(X)=Sum(b(J,k,n)*Product(t_j(X), j in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). So the sums of positive coefficients that I reference, for a fixed data set size n, and a fixed power k, are Sum(b(J,k,n), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k, such that b(J,k,n)>0).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* Michael De Vlieger, Apr 07 2018 *)
    LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* Jean-François Alcover, Dec 02 2018 *)
  • PARI
    lista(4, nn) \\ use pari script link;  Michel Marcus, Apr 21 2018

Formula

G.f.: (-x*(x+1)^3+1)/(x^5+3*x^4+2*x^3-2*x^2-5*x+1); this denominator equals (1-x)*(2-(1+x)^4).
a(n+5) = 5*a(n+4)+2*a(n+3)-2*a(n+2)-3*a(n+1)-a(n).