A301419 a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).
1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
Offset: 0
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..101
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
GAP
List([0..20],n->Sum([0..n],k->n^(n-k)*Stirling2(n,k))); # Muniru A Asiru, Mar 20 2018
-
Mathematica
Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}] Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]] Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]] (* Or: *) A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]]; Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
-
PARI
a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018
Formula
a(n) = n! * [x^n] exp((exp(n*x) - 1)/n), for n > 0.
a(n) = Sum_{k=0..n} n^(n-k)*Stirling2(n,k).
a(n) = n^n * BellPolynomial(n, 1/n) for n >= 1. - Peter Luschny, Dec 22 2021
a(n) ~ exp(n/LambertW(n^2) - n) * n^(2*n) / (sqrt(1 + LambertW(n^2)) * LambertW(n^2)^n). - Vaclav Kotesovec, Jun 06 2022