A301517 Numbers whose ratio (sum of nonsquarefree divisors)/(sum of squarefree divisors) is a positive integer.
8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 216, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520
Offset: 1
Keywords
Examples
27 is in the sequence because A162296(27) / A048250(27) = 36/4 = 9.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local S,N; uses numtheory; S, N:= selectremove(issqrfree, divisors(n)); N <> {} and type(convert(N,`+`)/convert(S,`+`),integer) end proc: select(filter, [$1..1000]); # Robert Israel, Mar 29 2018
-
Mathematica
lst={};Do[If[DivisorSigma[1,n]-Total[Select[Divisors[n],SquareFreeQ]]>0&&IntegerQ[(DivisorSigma[1,n]-Total[Select[Divisors[n],SquareFreeQ]])/Total[Select[Divisors[n],SquareFreeQ]]],AppendTo[lst,n]],{n,520}];lst rpiQ[n_]:=Module[{d=Divisors[n],sf,ot,ra},sf=Select[d,SquareFreeQ];ot=Complement[ d, sf];ra= Total[ ot]/Total[sf];ra>0&&IntegerQ[ra]]; Select[Range[600],rpiQ] (* Harvey P. Dale, Mar 19 2019 *) f[p_, e_] := (p^(e + 1) - 1)/(p^2 - 1); ratio[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[2, 520], (r = ratio[#]) > 1 && IntegerQ[r] &] (* Amiram Eldar, Jul 04 2020 *)
-
PARI
isok(n) = my(s = sumdiv(n, d, !issquarefree(d)*d)); s && !(s % (sigma(n) - s)); \\ Michel Marcus, Mar 24 2018
Comments