cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A301521 Numbers k such that 4*k^k - 3 is prime.

Original entry on oeis.org

2, 4, 5, 7, 22, 1045
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

Next term, if it exists, is greater than 5000. - Vaclav Kotesovec, Mar 25 2018
Next term, if it exists, is greater than 25000. - Robert Price, Apr 22 2019

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[4*#^# - 3] &] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 100, if(isprime(4*n^n-3), print1(n", ")))

Extensions

a(6) from Vaclav Kotesovec, Mar 25 2018

A301808 Primes of form 4*k^k + 3.

Original entry on oeis.org

7, 19, 12503, 40000000003, 8203095294242440214580822436689504141944719346082430189179667864757469187
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2018

Keywords

Comments

The next term is too large to include.

Crossrefs

Primes of form b*k^k + b - 1: A216148 (b=2), this sequence (b=4).

Formula

a(n) = 4*A301520(n+1)^A301520(n+1) + 3.

A301519 Numbers k such that 4*k^k + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 7, 25, 7143, 11583
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

a(9) > 20000, if it exists. All terms correspond to certified primes. - Giovanni Resta, Apr 06 2018

Crossrefs

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 100, if(isprime(4*n^n+1), print1(n", ")))

Extensions

a(7)-a(8) from Giovanni Resta, Apr 06 2018

A302090 Numbers k such that 6*k^k + 5 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 134, 533, 2911, 4351
Offset: 1

Views

Author

Seiichi Manyama, Apr 01 2018

Keywords

Comments

a(11) > 50000. - Robert Price, Feb 16 2020

Crossrefs

Numbers k such that b*k^k + b - 1 is prime: A110932 (b=2), A160360 (b=3), A301520 (b=4), A302088 (b=5), this sequence (b=6).
Cf. A302091.

Programs

  • PARI
    for(n=0, 500, if(isprime(6*n^n+5), print1(n", ")))

Extensions

a(8) from Jon E. Schoenfield, Apr 01 2018
a(9)-a(10) from Vaclav Kotesovec, Apr 01 2018

A302088 Numbers k such that 5*k^k + 4 is prime.

Original entry on oeis.org

3, 5, 9, 183, 561
Offset: 1

Views

Author

Seiichi Manyama, Apr 01 2018

Keywords

Comments

a(6), if it exists, is greater than 5000. - Vaclav Kotesovec, Apr 01 2018
a(6), if it exists, is greater than 20000. - Michael S. Branicky, Sep 02 2024

Crossrefs

Numbers k such that b*k^k + b - 1 is prime: A110932 (b=2), A160360 (b=3), A301520 (b=4), this sequence (b=5), A302090 (b=6).
Cf. A302089.

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[5*#^# + 4] &] (* Vaclav Kotesovec, Apr 01 2018 *)
  • PARI
    for(n=0, 500, if(isprime(5*n^n+4), print1(n", ")))
    
  • PARI
    lista(nn) = forstep(n=1, nn, 2, if(ispseudoprime(5*n^n+4), print1(n, ", "))); \\ Altug Alkan, Apr 01 2018

Extensions

a(5) from Vaclav Kotesovec, Apr 01 2018
Showing 1-5 of 5 results.