A301521
Numbers k such that 4*k^k - 3 is prime.
Original entry on oeis.org
2, 4, 5, 7, 22, 1045
Offset: 1
-
Select[Range[1000], PrimeQ[4*#^# - 3] &] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 100, if(isprime(4*n^n-3), print1(n", ")))
A301808
Primes of form 4*k^k + 3.
Original entry on oeis.org
7, 19, 12503, 40000000003, 8203095294242440214580822436689504141944719346082430189179667864757469187
Offset: 1
Primes of form b*k^k + b - 1:
A216148 (b=2), this sequence (b=4).
A301519
Numbers k such that 4*k^k + 1 is prime.
Original entry on oeis.org
0, 1, 2, 3, 7, 25, 7143, 11583
Offset: 1
-
Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
-
for(n=0, 100, if(isprime(4*n^n+1), print1(n", ")))
A302090
Numbers k such that 6*k^k + 5 is prime.
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 134, 533, 2911, 4351
Offset: 1
-
for(n=0, 500, if(isprime(6*n^n+5), print1(n", ")))
A302088
Numbers k such that 5*k^k + 4 is prime.
Original entry on oeis.org
3, 5, 9, 183, 561
Offset: 1
-
Select[Range[1, 1000], PrimeQ[5*#^# + 4] &] (* Vaclav Kotesovec, Apr 01 2018 *)
-
for(n=0, 500, if(isprime(5*n^n+4), print1(n", ")))
-
lista(nn) = forstep(n=1, nn, 2, if(ispseudoprime(5*n^n+4), print1(n, ", "))); \\ Altug Alkan, Apr 01 2018
Showing 1-5 of 5 results.
Comments