cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A301520 Numbers k such that 4*k^k + 3 is prime.

Original entry on oeis.org

0, 1, 2, 5, 10, 44, 65, 1424
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

Next term, if it exists, is greater than 5000. - Vaclav Kotesovec, Mar 25 2018
Next term, if it exists, is greater than 25000. - Robert Price, Apr 22 2019

Crossrefs

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[4*#^# + 3] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 100, if(isprime(4*n^n+3), print1(n", ")))

Extensions

a(8) from Vaclav Kotesovec, Mar 25 2018

A301641 Primes of form 4*k^k + 1.

Original entry on oeis.org

5, 17, 109, 3294173, 355271367880050092935562133789062501
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

No additional terms through k=1000. - Harvey P. Dale, Oct 06 2023

Crossrefs

Primes of form b*k^k + 1: A121270 (b=1), A216148 (b=2), A301644 (b=3), this sequence (b=4), A301642 (b=16).

Programs

  • Maple
    a:=k->`if`(isprime(4*k^k+1),4*k^k+1,NULL): seq(a(k),k=1..1400); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Select[Table[4n^n+1,{n,30}],PrimeQ] (* Harvey P. Dale, Oct 06 2023 *)

Formula

a(n) = 4*A301519(n+1)^A301519(n+1) + 1.

A301522 Numbers k such that 16*k^k + 1 is prime.

Original entry on oeis.org

0, 1, 3, 6, 12, 60, 85, 87, 612, 9073
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{0, Select[Range[1000], PrimeQ[16*#^# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 1000, if(isprime(16*n^n+1), print1(n", ")))

Extensions

a(10) from Michael S. Branicky, Apr 16 2023
Showing 1-3 of 3 results.