A122400
Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1.
Original entry on oeis.org
1, 1, 4, 31, 338, 4769, 82467, 1687989, 39905269, 1069863695, 32071995198, 1062991989013, 38596477083550, 1523554760656205, 64961391010251904, 2975343608212835855, 145687881987604377815, 7594435556630244257213
Offset: 0
-
A122399 := proc(n) option remember ; add( combinat[stirling2](n,k)*k^n*k!,k=0..n) ; end: A122400 := proc(n) option remember ; add( combinat[stirling1](n,k)*A122399(k),k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ",A122400(n)) ; od ; # R. J. Mathar, May 18 2007
-
max = 17; CoefficientList[ Series[ 1 + Sum[ ((1 + x)^n - 1)^n, {n, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 26 2013, after Vladeta Jovovic *)
A338040
E.g.f.: Sum_{j>=0} 4^j * (exp(j*x) - 1)^j.
Original entry on oeis.org
1, 4, 132, 11140, 1763076, 449262724, 168055179012, 86720706877060, 59029852191779076, 51241585497612147844, 55245853646893977682692, 72423868722672448652558980, 113447698393867318106045295876, 209271794145089904620369489016964
Offset: 0
-
Flatten[{1, Table[Sum[4^j * j^n * j! * StirlingS2[n, j], {j, 0, n}], {n, 1, 20}]}]
nmax = 20; CoefficientList[Series[1 + Sum[4^j*(Exp[j*x] - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
-
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 4^m*(exp(m*X)-1)^m), n)}
A301581
G.f.: Sum_{n>=0} 2^n * ((1+x)^n - 1)^n.
Original entry on oeis.org
1, 2, 16, 232, 4748, 125440, 4058312, 155336672, 6864980968, 343995674280, 19270975801600, 1193481831243584, 80966964261458368, 5971270693661978816, 475655179279901897536, 40699219246551726635840, 3722813577249648564213392, 362519587815189751405383520, 37442485808471509306691295808, 4088344078912544484116541775616, 470550859964811044524886252649760
Offset: 0
G.f.: A(x) = 1 + 2*x + 16*x^2 + 232*x^3 + 4748*x^4 + 125440*x^5 + 4058312*x^6 + 155336672*x^7 + 6864980968*x^8 + 343995674280*x^9 + ...
such that
A(x) = 1 + 2*((1+x)-1) + 4*((1+x)^2-1)^2 + 8*((1+x)^3-1)^3 + 16*((1+x)^4-1)^4 + 32*((1+x)^5-1)^5 + 64*((1+x)^6-1)^6 + 128*((1+x)^7-1)^7 + ...
Also,
A(x) = 1/3 + 2*(1+x)/(1 + 2*(1+x))^2 + 4*(1+x)^4/(1 + 2*(1+x)^2)^3 + 8*(1+x)^9/(1 + 2*(1+x)^3)^4 + 16*(1+x)^16/(1 + 2*(1+x)^4)^5 + 32*(1+x)^25/(1 + 2*(1+x)^5)^6 + ...
-
nmax = 20; CoefficientList[Series[1 + Sum[2^j*((1 + x)^j - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2020 *)
-
{a(n) = my(A,o=x*O(x^n)); A = sum(m=0,n, 2^m * ((1+x +o)^m - 1)^m ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A195263
E.g.f.: Sum_{n>=0} 3^n*(exp(n*x) - 1)^n.
Original entry on oeis.org
1, 3, 75, 4809, 578415, 112024353, 31851411375, 12493267169169, 6464106627329055, 4265281191267407073, 3495556570494504442575, 3483310917470882398369329, 4147647341931988462919773695, 5815857702618060221437908948993, 9485411994735540168549266106329775
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 75*x^2/2! + 4809*x^3/3! + 578415*x^4/4! +...
where
A(x) = 1 + 3*(exp(x)-1) + 3^2*(exp(2*x)-1)^2 + 3^3*(exp(3*x)-1)^3 +...
-
Flatten[{1, Table[Sum[3^k * k^n * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Oct 04 2020 *)
-
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 3^m*(exp(m*X)-1)^m), n)}
-
{Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, 3^k*k^n*k!*Stirling2(n, k))}
A301583
G.f.: Sum_{n>=0} 4^n * ((1+x)^n - 1)^n.
Original entry on oeis.org
1, 4, 64, 1792, 70736, 3600128, 224255040, 16521605376, 1405131880000, 135480346104896, 14602769310474240, 1739917222954854400, 227081534040721917952, 32217108743091290851328, 4936803887495636263284736, 812576030237749532251019264, 142976863303365903802301729024, 26781577193841845859144244087808, 5320767287406003709062843236972544, 1117525692987087894816123931091214336
Offset: 0
G.f.: A(x) = 1 + 4*x + 64*x^2 + 1792*x^3 + 70736*x^4 + 3600128*x^5 + 224255040*x^6 + 16521605376*x^7 + 1405131880000*x^8 + ...
such that
A(x) = 1 + 4*((1+x)-1) + 16*((1+x)^2-1)^2 + 64*((1+x)^3-1)^3 + 256*((1+x)^4-1)^4 + 1024*((1+x)^5-1)^5 + 4096*((1+x)^6-1)^6 + ...
Also,
A(x) = 1/5 + 4*(1+x)/(1 + 4*(1+x))^2 + 16*(1+x)^4/(1 + 4*(1+x)^2)^3 + 64*(1+x)^9/(1 + 4*(1+x)^3)^4 + 256*(1+x)^16/(1 + 4*(1+x)^4)^5 + 1024*(1+x)^25/(1 + 4*(1+x)^5)^6 + ...
-
nmax = 20; CoefficientList[Series[1 + Sum[4^j*((1 + x)^j - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2020 *)
-
{a(n) = my(A,o=x*O(x^n)); A = sum(m=0,n, 4^m * ((1+x +o)^m - 1)^m ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A301463
G.f.: Sum_{n>=0} (2*(1+x)^n - 1)^n / 2^(n+1).
Original entry on oeis.org
1, 6, 134, 5102, 272694, 18758134, 1577807110, 156883546142, 18001728695894, 2341268080847014, 340346951612008454, 54686371000455538574, 9624103747115691611318, 1841049154379441320293142, 380367456989975381891133446, 84407842226680664984458744126, 20023121531700221583865582432854, 5056357801144690975957652265658438, 1354259474931265421064754160458035078, 383444904170987865090156939638756172846
Offset: 0
G.f.: A(x) = 1 + 6*x + 134*x^2 + 5102*x^3 + 272694*x^4 + 18758134*x^5 + 1577807110*x^6 + 156883546142*x^7 + 18001728695894*x^8 + ...
such that
A(x) = 1/2 + (2*(1+x) - 1)/2^2 + (2*(1+x)^2 - 1)^2/2^3 + (2*(1+x)^3 - 1)^3/2^4 + (2*(1+x)^4 - 1)^4/2^5 + (2*(1+x)^5 - 1)^5/2^6 + ...
Also,
A(x) = 1/3 + 2*(1+x)/(2 + (1+x))^2 + 2^2*(1+x)^4/(2 + (1+x)^2)^3 + 2^3*(1+x)^9/(2 + (1+x)^3)^4 + 2^4*(1+x)^16/(2 + (1+x)^4)^5 + 2^5*(1+x)^25/(2 + (1+x)^5)^6 + 2^6*(1+x)^36/(2 + (1+x)^6)^7 + ...
-
nmax = 20; Round[CoefficientList[Series[Sum[(2*(1 + x)^j - 1)^j/2^(j + 1), {j, 0, nmax^2}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 08 2020 *)
A317798
G.f.: Sum_{n>=0} (3*(1+x)^n - 1)^n / 3^(n+1).
Original entry on oeis.org
1, 15, 786, 69261, 8554530, 1359020643, 263929299177, 60582032629791, 16046282916588207, 4817035600778756553, 1616224504900354928832, 599373591433178971787007, 243449152911402772344286998, 107482020677618238226506065235, 51249638236281451846248205583562, 26247197050200652206165329786055981, 14369481728948627418149559363836673273
Offset: 0
G.f.: A(x) = 1 + 15*x + 786*x^2 + 69261*x^3 + 8554530*x^4 + 1359020643*x^5 + 263929299177*x^6 + 60582032629791*x^7 + 16046282916588207*x^8 + ...
such that
A(x) = 1/3 + (3*(1+x) - 1)/3^2 + (3*(1+x)^2 - 1)^3/3^3 + (3*(1+x)^3 - 1)^3/3^4 + (3*(1+x)^4 - 1)^4/3^5 + (3*(1+x)^5 - 1)^5/3^6 + ...
Also,
A(x) = 1/4 + 3*(1+x)/(3 + (1+x))^2 + 3^2*(1+x)^4/(3 + (1+x)^2)^3 + 3^3*(1+x)^9/(3 + (1+x)^3)^4 + 3^4*(1+x)^16/(3 + (1+x)^4)^5 + 3^5*(1+x)^25/(3 + (1+x)^5)^6 + 3^6*(1+x)^36/(3 + (1+x)^6)^7 + ...
Showing 1-7 of 7 results.
Comments