cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301617 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.

Original entry on oeis.org

1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1.

Examples

			1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.
		

Crossrefs

Intersection of A007775 and A017173.

Programs

  • Maple
    seq(seq(i+90*j,i=[1,19,37,73]),j=0..30); # Robert Israel, Mar 25 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,19,37,73,91},50] (* Harvey P. Dale, Dec 14 2019 *)
  • PARI
    a(n) = 1 + 18 * (n - 1 + n\4) \\ David A. Corneth, Mar 24 2018
    
  • PARI
    Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018

Formula

n == {1, 19, 37, 73} mod 90.
a(n + 1) = a(n) + 18 * A177704(n + 1). - David A. Corneth, Mar 24 2018
From Colin Barker, Mar 24 2018: (Start)
G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

Extensions

The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018