A301617 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.
1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099
Offset: 1
Examples
1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Maple
seq(seq(i+90*j,i=[1,19,37,73]),j=0..30); # Robert Israel, Mar 25 2018
-
Mathematica
LinearRecurrence[{1,0,0,1,-1},{1,19,37,73,91},50] (* Harvey P. Dale, Dec 14 2019 *)
-
PARI
a(n) = 1 + 18 * (n - 1 + n\4) \\ David A. Corneth, Mar 24 2018
-
PARI
Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018
Formula
n == {1, 19, 37, 73} mod 90.
a(n + 1) = a(n) + 18 * A177704(n + 1). - David A. Corneth, Mar 24 2018
From Colin Barker, Mar 24 2018: (Start)
G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
Extensions
The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018
Comments