cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301622 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 4.

Original entry on oeis.org

13, 31, 49, 67, 103, 121, 139, 157, 193, 211, 229, 247, 283, 301, 319, 337, 373, 391, 409, 427, 463, 481, 499, 517, 553, 571, 589, 607, 643, 661, 679, 697, 733, 751, 769, 787, 823, 841, 859, 877, 913, 931, 949, 967, 1003, 1021, 1039, 1057, 1093, 1111
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {13, 31, 49, 67} mod 90 with additive sum sequence 13{+18+18+18+36} {repeat ...}. Includes all prime numbers > 5 with digital root 4.

Crossrefs

Intersection of A007775 and A017209.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=4); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (13 + 18 x + 18 x^2 + 18 x^3 + 23 x^4)/((1 - x)^2*(1 + x) (1 + x^2)), {x, 0, 50}], x] (* Michael De Vlieger, Apr 21 2018 *)
    LinearRecurrence[{1,0,0,1,-1},{13,31,49,67,103},50] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    Vec(x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
    

Formula

Numbers == {13, 31, 49, 67} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

Extensions

Last term corrected by Colin Barker, Mar 25 2018