A301622 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 4.
13, 31, 49, 67, 103, 121, 139, 157, 193, 211, 229, 247, 283, 301, 319, 337, 373, 391, 409, 427, 463, 481, 499, 517, 553, 571, 589, 607, 643, 661, 679, 697, 733, 751, 769, 787, 823, 841, 859, 877, 913, 931, 949, 967, 1003, 1021, 1039, 1057, 1093, 1111
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
GAP
Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=4); # Muniru A Asiru, Apr 22 2018
-
Mathematica
Rest@ CoefficientList[Series[x (13 + 18 x + 18 x^2 + 18 x^3 + 23 x^4)/((1 - x)^2*(1 + x) (1 + x^2)), {x, 0, 50}], x] (* Michael De Vlieger, Apr 21 2018 *) LinearRecurrence[{1,0,0,1,-1},{13,31,49,67,103},50] (* Harvey P. Dale, May 11 2019 *)
-
PARI
Vec(x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
Formula
Numbers == {13, 31, 49, 67} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
Extensions
Last term corrected by Colin Barker, Mar 25 2018
Comments