A301623 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 5.
23, 41, 59, 77, 113, 131, 149, 167, 203, 221, 239, 257, 293, 311, 329, 347, 383, 401, 419, 437, 473, 491, 509, 527, 563, 581, 599, 617, 653, 671, 689, 707, 743, 761, 779, 797, 833, 851, 869, 887, 923, 941, 959, 977, 1013, 1031, 1049, 1067, 1103, 1121
Offset: 1
Examples
23+18=41; 41+18=59; 59+18=77; 77+36=113; 113+18=131.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
GAP
Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=5); # Muniru A Asiru, Apr 22 2018
-
Mathematica
LinearRecurrence[{1,0,0,1,-1},{23,41,59,77,113},50] (* Harvey P. Dale, Jul 28 2018 *)
-
PARI
Vec(x*(23 + 18*x + 18*x^2 + 18*x^3 + 13*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
Formula
Numbers == {23, 41, 59, 77} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(23 + 18*x + 18*x^2 + 18*x^3 + 13*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
Comments