cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301703 a(n) is the number of positive coefficients of the polynomial (x-1)*(x^2-1)*...*(x^n-1).

Original entry on oeis.org

1, 2, 3, 3, 6, 6, 9, 13, 16, 18, 21, 27, 34, 32, 42, 47, 54, 62, 73, 79, 85, 96, 104, 113, 123, 140, 150, 171, 174, 190, 200, 211, 234, 240, 263, 275, 301, 304, 322, 351, 368, 396, 413, 455, 451, 470, 487, 499, 531, 540, 592, 585, 631, 630, 687, 691, 734, 774, 793, 863
Offset: 1

Views

Author

Ovidiu Bagdasar, Mar 25 2018

Keywords

Examples

			Denote P_n(x) = (x-1)...(x^n-1).
P_1(x) = x-1, hence a(1)=1.
P_2(x) = (x-1)*(x^2-1) = x^3-x^2-x+1, hence a(2)=2;
P_3(x) = (x-1)*(x^2-1)*(x^3-1) = x^6-x^5-x^4+x^2+x-1, hence a(3)=3;
P_4(x) = (x-1)*(x^2-1)*(x^3-1)*(x^4-1) = x^10 - x^9 - x^8+2x^5-x^2-x+1, hence a(4)=3.
		

Crossrefs

Cf. A231599: a(n) is the number of positive coefficients in row n.

Programs

  • Maple
    a:= n-> nops(select(x-> x>0, [(p-> seq(coeff(p, x, i),
          i=0..degree(p)))(expand(mul(x^i-1, i=1..n)))])):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Table[Count[CoefficientList[Expand[Times@@(x^Range[n]-1)],x],?(#>0&)],{n,60}] (* _Harvey P. Dale, Feb 10 2019 *)
  • PARI
    a(n) = #select(x->(x>0), Vec((prod(k=1, n, (x^k-1))))); \\ Michel Marcus, Apr 02 2018