cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301704 a(n) is the number of negative coefficients of polynomial (x-1)*(x^2-1)*...*(x^n-1).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 21, 26, 34, 32, 42, 50, 54, 64, 73, 82, 85, 96, 104, 116, 123, 134, 150, 162, 174, 182, 200, 216, 234, 252, 263, 286, 301, 322, 322, 340, 368, 376, 413, 414, 451, 460, 487, 518, 531, 580, 592, 638, 631, 684, 687, 728, 734, 744, 793, 800, 859, 854, 917, 936, 977, 1000, 1037, 1088, 1108, 1166
Offset: 1

Views

Author

Ovidiu Bagdasar, Mar 25 2018

Keywords

Examples

			Denote P_n(x) = (x-1)...(x^n-1).
P_1(x) = x-1, hence a(1)=1.
P_2(x) = (x-1)*(x^2-1) = x^3-x^2-x+1, hence a(2)=2;
P_3(x) = (x-1)*(x^2-1)*(x^3-1) = x^6-x^5-x^4+x^2+x-1, hence a(3)=3;
P_4(x) = (x-1)*(x^2-1)*(x^3-1)*(x^4-1) = x^10 - x^9 - x^8+2x^5-x^2-x+1, hence a(4)=4.
		

Crossrefs

Cf. A231599: Row n represents coefficients of (-1)^n*P_n(x).

Programs

  • Maple
    a:= n-> add(`if`(i<0, 1, 0), i=[(p-> seq(coeff(p, x, i),
             i=0..degree(p)))(expand(mul(x^i-1, i=1..n)))]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Rest@ Array[Count[CoefficientList[Times @@ Array[x^# - 1 &, # - 1], x], ?(# < 0 &)] &, 71] (* _Michael De Vlieger, Mar 29 2019 *)
  • PARI
    a(n) = #select(x->(x<0), Vec((prod(k=1, n, (x^k-1))))); \\ Michel Marcus, Apr 02 2018

Extensions

Missing term 414 inserted by Alois P. Heinz, Mar 29 2019