cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301705 a(n) is the number of zero coefficients of the polynomial (x-1)*(x^2-1)*...*(x^n-1) below the leading coefficient.

Original entry on oeis.org

0, 0, 1, 4, 4, 8, 11, 12, 14, 20, 25, 26, 24, 42, 37, 40, 46, 46, 45, 50, 62, 62, 69, 72, 80, 78, 79, 74, 88, 94, 97, 102, 94, 104, 105, 106, 102, 116, 137, 130, 126, 132, 121, 122, 134, 152, 155, 160, 164, 156, 143, 156, 170, 172, 167, 178, 186, 194, 185, 168, 174, 176, 183, 182, 192, 194, 205, 196, 200, 188
Offset: 1

Views

Author

Ovidiu Bagdasar, Mar 25 2018

Keywords

Examples

			Denote P_n(x) = (x-1)...(x^n-1).
P_1(x) = x-1, hence a(1)=0.
P_2(x) = (x-1)*(x^2-1) = x^3-x^2-x+1, hence a(2)=0;
P_3(x) = (x-1)*(x^2-1)*(x^3-1) = x^6-x^5-x^4+x^2+x-1, hence a(3)=1;
P_4(x) = (x-1)*(x^2-1)*(x^3-1)*(x^4-1) = x^10 - x^9 - x^8+2x^5-x^2-x+1, hence a(4)=4.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(i=0, 1, 0), i=[(p-> seq(coeff(p, x, i),
             i=0..degree(p)))(expand(mul(x^i-1, i=1..n)))]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Rest@ Array[Count[CoefficientList[Times @@ Array[x^# - 1 &, # - 1], x], ?(# == 0 &)] &, 71] (* _Michael De Vlieger, Mar 29 2019 *)
  • PARI
    a(n) = #select(x->(x==0), Vec((prod(k=1, n, (x^k-1))))); \\ Michel Marcus, Apr 02 2018

Formula

a(n) = 1+n(n+1)/2-A086781(n).