A301705 a(n) is the number of zero coefficients of the polynomial (x-1)*(x^2-1)*...*(x^n-1) below the leading coefficient.
0, 0, 1, 4, 4, 8, 11, 12, 14, 20, 25, 26, 24, 42, 37, 40, 46, 46, 45, 50, 62, 62, 69, 72, 80, 78, 79, 74, 88, 94, 97, 102, 94, 104, 105, 106, 102, 116, 137, 130, 126, 132, 121, 122, 134, 152, 155, 160, 164, 156, 143, 156, 170, 172, 167, 178, 186, 194, 185, 168, 174, 176, 183, 182, 192, 194, 205, 196, 200, 188
Offset: 1
Examples
Denote P_n(x) = (x-1)...(x^n-1). P_1(x) = x-1, hence a(1)=0. P_2(x) = (x-1)*(x^2-1) = x^3-x^2-x+1, hence a(2)=0; P_3(x) = (x-1)*(x^2-1)*(x^3-1) = x^6-x^5-x^4+x^2+x-1, hence a(3)=1; P_4(x) = (x-1)*(x^2-1)*(x^3-1)*(x^4-1) = x^10 - x^9 - x^8+2x^5-x^2-x+1, hence a(4)=4.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..300
- Dorin Andrica and Ovidiu Bagdasar, On some results concerning the polygonal polynomials, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11.
Programs
-
Maple
a:= n-> add(`if`(i=0, 1, 0), i=[(p-> seq(coeff(p, x, i), i=0..degree(p)))(expand(mul(x^i-1, i=1..n)))]): seq(a(n), n=1..70); # Alois P. Heinz, Mar 29 2019
-
Mathematica
Rest@ Array[Count[CoefficientList[Times @@ Array[x^# - 1 &, # - 1], x], ?(# == 0 &)] &, 71] (* _Michael De Vlieger, Mar 29 2019 *)
-
PARI
a(n) = #select(x->(x==0), Vec((prod(k=1, n, (x^k-1))))); \\ Michel Marcus, Apr 02 2018
Formula
a(n) = 1+n(n+1)/2-A086781(n).