cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301809 Group the natural numbers such that the first group is (1) then (2),(3),(4,5),(6,7,8),... with the n-th group containing F(n) sequential terms where F(n) is the n-th Fibonacci number (A000045(n)). Sequence gives the sum of terms in the n-th group.

Original entry on oeis.org

1, 2, 3, 9, 21, 55, 140, 364, 945, 2465, 6435, 16821, 43992, 115102, 301223, 788425, 2063817, 5402651, 14143524, 37026936, 96935685, 253777537, 664392743, 1739393929, 4553778096, 11921922650, 31211961195, 81713914569, 213929707485, 560075086495, 1466295355580, 3838810662436, 10050136117497
Offset: 1

Views

Author

Frank M Jackson, Mar 27 2018

Keywords

Comments

a(n) is the sum of all nodes at height n-1 within a binary tree structure recursively built from the Hofstadter G-sequence (see comments for A005206).

Examples

			a(7) = 14 + 15 + 16 + ... + 21 = (F(9)+1)*F(6)/2 = 140.
		

Crossrefs

Programs

  • Magma
    [1] cat [(Fibonacci(n+2)+1)*Fibonacci(n-1) div 2 : n in [2..35] ]; // Vincenzo Librandi, Apr 18 2018
    
  • Mathematica
    a[n_] := If[n==1, 1, (Fibonacci[n+2]+1)Fibonacci[n-1]/2]; Array[a, 50]
    Join[{1}, LinearRecurrence[{3, 1, -5, -1, 1}, {2, 3, 9, 21, 55}, 40]] (* Vincenzo Librandi, Apr 18 2018 *)
  • PARI
    a(n) = if (n==1, 1, (fibonacci(n+2)+1)*fibonacci(n-1)/2); \\ Michel Marcus, Apr 21 2018
    
  • PARI
    Vec(x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)) + O(x^60)) \\ Colin Barker, May 11 2018

Formula

a(1) = 1 and for n > 1, a(n) = (F(n+2)+1)*F(n-1)/2, where F(n) is the n-th Fibonacci number (A000045).
From Colin Barker, Mar 27 2018: (Start)
G.f.: x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. (End)
a(n) = A033192(n+1) - A033192(n) for n > 1. - J.S. Seneschal, Jul 07 2025