cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301830 Number of factorizations of n into factors (greater than 1) of two kinds.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 20, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 36, 6, 6, 6, 46, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 76, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 65, 6, 22, 2, 16, 6, 22, 2, 108, 2, 6, 16, 16, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(6) = 6 factorizations: (2*3)*(), (3)*(2), (2)*(3), ()*(2*3), (6)*(), ()*(6).
The a(12) = 16 factorizations:
  ()*(2*2*3), (2)*(2*3), (3)*(2*2), (2*2)*(3), (2*3)*(2), (2*2*3)*(),
  ()*(2*6), (2)*(6), (6)*(2), (2*6)*(), ()*(3*4), (3)*(4), (4)*(3), (3*4)*(),
  ()*(12), (12)*().
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Divisors[n]}],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, i, 2))} \\ Andrew Howroyd, Nov 18 2018

Formula

Dirichlet g.f.: Product_{n > 1} 1/(1 - n^(-s))^2. [corrected by Ilya Gutkovskiy, Dec 14 2020]
a(p^n) = A000712(n) for prime p. - Andrew Howroyd, Nov 18 2018