A301830 Number of factorizations of n into factors (greater than 1) of two kinds.
1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 20, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 36, 6, 6, 6, 46, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 76, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 65, 6, 22, 2, 16, 6, 22, 2, 108, 2, 6, 16, 16, 6
Offset: 1
Keywords
Examples
The a(6) = 6 factorizations: (2*3)*(), (3)*(2), (2)*(3), ()*(2*3), (6)*(), ()*(6). The a(12) = 16 factorizations: ()*(2*2*3), (2)*(2*3), (3)*(2*2), (2*2)*(3), (2*3)*(2), (2*2*3)*(), ()*(2*6), (2)*(6), (6)*(2), (2*6)*(), ()*(3*4), (3)*(4), (4)*(3), (3*4)*(), ()*(12), (12)*().
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Index to sequences related to prime signature
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Divisors[n]}],{n,100}]
-
PARI
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v} seq(n)={MultEulerT(vector(n, i, 2))} \\ Andrew Howroyd, Nov 18 2018
Formula
Dirichlet g.f.: Product_{n > 1} 1/(1 - n^(-s))^2. [corrected by Ilya Gutkovskiy, Dec 14 2020]
a(p^n) = A000712(n) for prime p. - Andrew Howroyd, Nov 18 2018
Comments