A301854 Number of positive special sums of integer partitions of n.
1, 3, 7, 13, 25, 40, 67, 100, 158, 220, 336, 452, 649, 862, 1228, 1553, 2155, 2738, 3674, 4612, 6124, 7497, 9857, 12118, 15524, 18821, 24152, 28863, 36549, 44002, 54576, 65125, 80943, 95470, 117991, 139382, 169389, 199144, 242925, 283353, 342139, 400701, 479001
Offset: 1
Keywords
Examples
The a(4) = 13 special positive subset-sums: 1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111), 1<=(211), 3<=(211), 4<=(211), 1<=(31), 3<=(31), 4<=(31), 2<=(22), 4<=(22), 4<=(4).
Crossrefs
Programs
-
Mathematica
uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&]; Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
-
Python
from collections import Counter from sympy.utilities.iterables import partitions, multiset_combinations def A301854(n): return sum(sum(1 for r in Counter(sum(q) for l in range(1,len(p)+1) for q in multiset_combinations(p,l)).values() if r==1) for p in (tuple(Counter(x).elements()) for x in partitions(n))) # Chai Wah Wu, Sep 26 2023
Extensions
a(21)-a(35) from Alois P. Heinz, Apr 08 2018
a(36)-a(43) from Chai Wah Wu, Sep 26 2023
Comments