A301922 Regular triangle where T(n,k) is the number of unlabeled k-uniform hypergraphs spanning n vertices.
1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 23, 29, 4, 1, 1, 122, 2102, 150, 5, 1, 1, 888, 7011184, 7013164, 1037, 6, 1, 1, 11302, 1788775603336, 29281354507753848, 1788782615612, 12338, 7, 1, 1, 262322, 53304526022885280592, 234431745534048893449761040648512, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 2 1 1 7 3 1 1 23 29 4 1 The T(4,2) = 7 hypergraphs: {{1,2},{3,4}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}} {{1,2},{1,3},{2,4},{3,4}} {{1,4},{2,3},{2,4},{3,4}} {{1,3},{1,4},{2,3},{2,4},{3,4}} {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..91
Crossrefs
Programs
-
Maple
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x-> [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]): h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i] /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq( `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)): b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n])) /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)): A:= proc(n, k) A(n, k):= `if`(k>n-k, A(n, n-k), b(n$2, [], k)) end: T:= (n, k)-> A(n, k)-A(n-1, k): seq(seq(T(n, k), k=1..n), n=1..9); # Alois P. Heinz, Aug 21 2019
-
PARI
permcount(v)={my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L,k); while(#L
0, u=vecsort(apply(f, u)); d=lex(u,v)); !d} Q(n,k,perm)={my(t=0); forsubset([n,k], v, t += can(Vec(v), t->perm[t])); t} U(n,k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n,k,rep(p))); s/n!} for(n=1, 10, for(k=1, n, print1(U(n,k)-U(n-1,k), ", ")); print) \\ Andrew Howroyd, Aug 10 2019
Formula
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 09 2019