cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302055 An arithmetic derivative analog for nonstandard factorization process based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 27, 13, 1, 44, 10, 15, 10, 32, 1, 31, 1, 80, 39, 19, 12, 60, 1, 21, 14, 68, 1, 75, 1, 48, 102, 25, 1, 112, 14, 45, 55, 56, 1, 47, 75, 92, 57, 31, 1, 92, 1, 33, 16, 192, 16, 111, 1, 72, 150, 59, 1, 156, 1, 39, 20, 80, 18, 67, 1, 176, 81, 43, 1, 192, 95, 45, 71, 140, 1, 249, 147, 96
Offset: 0

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

The formula is analogous to Reinhard Zumkeller's May 09 2011 formula in A003415, with A032742 replaced by A302042. See the comments in the latter sequence.
Note that this cannot be computed just as f(n) = A003415(A250246(n)), in contrast to many other such analogs, like A253557, A302039, A302041, A302050, A302051 and A302052.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639.
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A302055(n) = if(n<2,0,my(k=A302042(n)); (A020639(n)*A302055(k))+k);

Formula

a(0) = a(1) = 0; for n > 1, a(n) = (A020639(n)*a(A302042(n))) + A302042(n).