A302055 An arithmetic derivative analog for nonstandard factorization process based on the sieve of Eratosthenes (A083221).
0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 27, 13, 1, 44, 10, 15, 10, 32, 1, 31, 1, 80, 39, 19, 12, 60, 1, 21, 14, 68, 1, 75, 1, 48, 102, 25, 1, 112, 14, 45, 55, 56, 1, 47, 75, 92, 57, 31, 1, 92, 1, 33, 16, 192, 16, 111, 1, 72, 150, 59, 1, 156, 1, 39, 20, 80, 18, 67, 1, 176, 81, 43, 1, 192, 95, 45, 71, 140, 1, 249, 147, 96
Offset: 0
Keywords
Links
Programs
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639. v078898 = ordinal_transform(vector(up_to,n,A020639(n))); A078898(n) = v078898[n]; A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); A302055(n) = if(n<2,0,my(k=A302042(n)); (A020639(n)*A302055(k))+k);
Comments