cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302255 Total domination number of the n-antiprism graph.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 16, 16, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 24, 24, 24, 25, 26, 26, 27, 28, 28, 28, 29, 30, 30, 31, 32, 32, 32, 33, 34, 34, 35, 36, 36, 36, 37, 38, 38, 39, 40, 40, 40, 41
Offset: 0

Views

Author

Eric W. Weisstein, Apr 07 2018

Keywords

Comments

Sequence extended to a(0)-a(2) using the recurrence/formula.

Crossrefs

Programs

  • Magma
    I:=[2,2,3,4,4,4,5,6]; [0,1] cat [n le 8 select I[n] else Self(n-1) + Self(n-7) - Self(n-8): n in [1..30]]; // G. C. Greubel, Apr 09 2018
  • Mathematica
    Table[(4 + 4 n + E^(4 I n Pi/7) Root[1 + 7 #^2 + 28 #^3 + 42 #^4 + 28 #^5 + 7 #^6 &, 1] + E^(-4 I n Pi/7) Root[1 + 7 #^2 + 28 #^3 + 42 #^4 + 28 #^5 + 7 #^6 &, 2] + E^(-2 I n Pi/7) Root[1 + 7 #^2 + 28 #^3 + 42 #^4 + 28 #^5 + 7 #^6 &, 3] + E^(2 I n Pi/7) Root[1 + 7 #^2 + 28 #^3 + 42 #^4 + 28 #^5 + 7 #^6 &, 4] + E^(-6 I n Pi/7) Root[1 + 7 #^2 + 28 #^3 + 42 #^4 + 28 #^5 + 7 #^6 &, 5] + E^(6 I n Pi/7) Root[1 + 7 #^2 + 28 #^3 + 42 #^4 + 28 #^5 + 7 #^6 &, 6])/ 7, {n, 20}] // RootReduce
    LinearRecurrence[{1,0,0,0,0,0,1,-1}, {1,2,2,3,4,4,4,5,6,6}, {0, 20}]
    CoefficientList[Series[x (1 + x + x^3 + x^4)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 20}], x]
  • PARI
    x='x+O('x^50); concat(0, Vec(x*(1+x+x^3+x^4)/((1-x)^2*(1+x+x^2+ x^3+x^4+x^5+x^6)))) \\ G. C. Greubel, Apr 09 2018
    

Formula

a(n) = a(n-1) + a(n-7) - a(n-8).
G.f.: x*(1 + x + x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-7) + 4. - Andrew Howroyd, Apr 18 2018
a(n) = a(n-7*k) + 4*k. - Eric W. Weisstein, Apr 19 2018