A302301 Number of ways to write n as a sum of two distinct semiprimes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 0, 1, 3, 3, 2, 1, 3, 3, 2, 2, 4, 3, 2, 1, 4, 5, 3, 2, 1, 2, 3, 2, 5, 3, 2, 2, 5, 6, 6, 1, 3, 5, 3, 3, 4, 4, 3, 2, 6, 7, 5, 3, 3, 3, 4, 3, 5, 5, 3, 2, 7, 7, 2, 4
Offset: 0
Examples
a(19) = 2; 19 = 15+4 = 10+9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000 (first 1000 terms from Harvey P. Dale)
- Index entries for sequences related to partitions
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 0, `if`(numtheory[bigomega](n)=2, n, h(n-1))) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, `if`(i>n, 0, x*b(n-i, h(min(n-i, i-1))))+b(n, h(i-1)))), x, 3) end: a:= n-> coeff(b(n, h(n)), x, 2): seq(a(n), n=0..120); # Alois P. Heinz, May 26 2021
-
Mathematica
Table[Sum[KroneckerDelta[PrimeOmega[i], 2] KroneckerDelta[PrimeOmega[n - i], 2], {i, Floor[(n - 1)/2]}], {n, 100}] Table[Count[IntegerPartitions[n,{2}],?(PrimeOmega[#[[1]]]==PrimeOmega[#[[2]]]==2&&#[[1]]!=#[[2]]&)],{n,90}] (* _Harvey P. Dale, Aug 03 2020 *)
-
PARI
a(n) = sum(i=1, (n-1)\2, (bigomega(i)==2)*(bigomega(n-i)==2)); \\ Michel Marcus, Apr 08 2018
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} [Omega(i) = 2] * [Omega(n-i) = 2], where Omega = A001222 and [] is the Iverson bracket.