cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A384684 Nonprimes k such that sopf(k)^k == sopf(k) (mod k) where sopf = A008472.

Original entry on oeis.org

1, 28, 30, 45, 65, 66, 90, 105, 133, 190, 231, 286, 301, 325, 369, 385, 426, 496, 532, 561, 645, 793, 946, 1016, 1105, 1288, 1353, 1729, 1905, 2041, 2107, 2121, 2275, 2278, 2413, 2465, 2501, 2701, 2737, 2821, 3577, 3781, 3861, 4015, 4123, 4161, 4699
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 06 2025

Keywords

Comments

Superset of even perfect numbers > 6.

Crossrefs

Programs

  • Magma
    [k: k in [1..5000] | not IsPrime(k) and Modexp(k eq 1 select 0 else &+[p[1]: p in Factorization(k)], k, k) eq (k eq 1 select 0 else &+[p[1]: p in Factorization(k)])];
    
  • Maple
    filter:= proc(k) local s;
      if isprime(k) then return false fi;
      s:= convert(numtheory:-factorset(k),`+`);
      (s &^ k - s) mod k = 0;
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jun 12 2025
  • Mathematica
    A008472[n_]:=Sum[p, {p, Select[Divisors[n], PrimeQ]}]; Select[Range[5000],PowerMod[A008472[#],#,#]==A008472[#] &] (* Stefano Spezia, Jun 07 2025 *)
  • PARI
    isok(k) = if (!isprime(k), my(s=vecsum(factor(k)[, 1])); Mod(s, k)^k == s); \\ Michel Marcus, Jun 12 2025
Showing 1-1 of 1 results.