A302406 Total domination number of the n X n torus grid graph.
0, 1, 2, 3, 4, 8, 10, 14, 16, 23, 26, 33, 36, 46, 50, 60, 64, 77, 82, 95, 100, 116, 122, 138, 144, 163, 170, 189, 196, 218, 226, 248, 256, 281, 290, 315, 324, 352, 362, 390, 400, 431, 442, 473, 484, 518, 530, 564, 576, 613, 626, 663, 676, 716, 730, 770, 784, 827, 842, 885
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Torus Grid Graph
- Eric Weisstein's World of Mathematics, Total Domination Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).
Programs
-
Magma
R:=RealField(); [Round((3 -(-1)^n*(n-1) +n +2*n^2 - 4*Cos(n*Pi(R)/2) + 2*Sin(n*Pi(R)/2))/8): n in [0..20]]; // G. C. Greubel, Apr 09 2018
-
Mathematica
Table[(3-(-1)^n*(n-1)+n+2*n^2-4*Cos[n*Pi/2]+2*Sin[n*Pi/2])/8, {n, 0, 20}] LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {1, 2, 3, 4, 8, 10, 14}, {0, 20}] CoefficientList[Series[-x (1 + x + 2 x^4)/((-1 + x)^3 (1 + x)^2 (1 + x^2)), {x, 0, 20}], x]
-
PARI
for(n=0,30, print1(round((3-(-1)^n*(n-1) +n +2*n^2 -4*cos(n*Pi/2) + 2*sin(n*Pi/2))/8), ", ")) \\ G. C. Greubel, Apr 09 2018
Formula
a(n) = (3 -(-1)^n*(n - 1) + n + 2*n^2 - 4*cos(n*Pi/2) + 2*sin(n*Pi/2))/8.
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
G.f.: -x*(1 + x + 2*x^4)/((-1 + x)^3*(1 + x)^2*(1 + x^2)).
a(n) ~ n^2/4. - Andrew Howroyd, Apr 21 2018
Comments