A302445 Triangle read by rows: row n gives primes of form k^2 + n - k for 0 < k < n.
2, 3, 5, 5, 7, 11, 17, 7, 13, 19, 37, 11, 29, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 13, 19, 43, 103, 17, 71, 197, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 19, 31, 61, 109, 151, 229, 23, 41, 131, 293, 401, 23, 29, 43, 53, 79, 113, 179, 233, 263, 443
Offset: 2
Examples
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ---+----------------------------------------------------------------------- 2| 2; 3| 3, 5; 4| 5| 5, 7, 11, 17; 6| 7| 7, , 13, 19, , 37; 8| 9| , 11, , , 29, , , ; 10| 11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101; 12| 13| 13, , 19, , , 43, , , , 103, , ; 14| 15| , 17, , , , , , 71, , , , , , 197; 16| 17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
Links
- Seiichi Manyama, Rows n = 2..421, flattened
- Eric Weisstein's World of Mathematics, Lucky Number of Euler
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
- Wikipedia, Lucky numbers of Euler
Crossrefs
Programs
-
GAP
a:=Filtered(Flat(List([1..10],n->List([1..n],k->k^2+n-k))),IsPrime); # Muniru A Asiru, Apr 09 2018
-
Mathematica
Map[Union@ Select[#, PrimeQ] &, Table[k^2 + n - k, {n, 23}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Apr 10 2018 *)