cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302826 a(n) is number of primes of form k^2 + n - k for 0 < k < n.

Original entry on oeis.org

1, 2, 0, 4, 0, 4, 0, 2, 0, 10, 0, 4, 0, 3, 0, 16, 0, 6, 0, 5, 0, 10, 0, 10, 0, 5, 0, 13, 0, 14, 0, 3, 0, 10, 0, 16, 0, 7, 0, 40, 0, 8, 0, 6, 0, 26, 0, 12, 0, 9, 0, 19, 0, 14, 0, 9, 0, 34, 0, 21, 0, 5, 0, 19, 0, 36, 0, 13, 0, 28, 0, 18, 0, 7, 0, 31, 0, 18, 0, 19, 0, 34, 0, 15
Offset: 2

Views

Author

Seiichi Manyama, Apr 14 2018

Keywords

Examples

			Primes of form k^2 + n - k for 0 < k < n:
  n\k|  1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16  |a(n)
  ---+------------------------------------------------------------------------+----
    2|  2;                                                                    |  1
    3|  3,  5;                                                                |  2
    4|                                                                        |  0
    5|  5,  7, 11, 17;                                                        |  4
    6|                                                                        |  0
    7|  7,   , 13, 19,   , 37;                                                |  4
    8|                                                                        |  0
    9|   , 11,   ,   , 29,   ,   ,   ;                                        |  2
   10|                                                                        |  0
   11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101;                               | 10
   12|                                                                        |  0
   13| 13,   , 19,   ,   , 43,   ,   ,   , 103,    ,    ;                     |  4
   14|                                                                        |  0
   15|   , 17,   ,   ,   ,   ,   , 71,   ,    ,    ,    ,    , 197;           |  3
   16|                                                                        |  0
   17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257; | 16
		

Crossrefs

A382210 Irregular triangle read by rows: T(n,k) = k^2 - k + (A003173(n) + 1)/4 with 1 <= k < (A003173(n) + 1)/4.

Original entry on oeis.org

2, 3, 5, 5, 7, 11, 17, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601
Offset: 4

Views

Author

Stefano Spezia, Mar 18 2025

Keywords

Examples

			The irregular triangle begins as:
   2;
   3,  5;
   5,  7, 11, 17;
  11, 13, 17, 23, 31, 41, 53, 67, 83, 101;
  17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
  ...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 225.

Crossrefs

Programs

  • Mathematica
    Heegner:={1, 2, 3, 7, 11, 19, 43, 67, 163};A003173[n_]:=Part[Heegner,n]; T[n_,k_]:=k^2-k+(A003173[n]+1)/4;Table[T[n,k],{n,4,9},{k,(A003173[n]+1)/4-1}]//Flatten
Showing 1-2 of 2 results.