A302548 Expansion of e.g.f. -log(1 + log(1 - x))/(1 + log(1 - x)).
0, 1, 4, 22, 155, 1333, 13541, 158688, 2107682, 31291894, 513590170, 9234669420, 180534475832, 3812852144788, 86517295628188, 2099170738243328, 54233876338638192, 1486517654443664016, 43084555863325589232, 1316588795487600071904, 42306543064537291007424, 1426115146736949130634400
Offset: 0
Keywords
Examples
E.g.f.: A(x) = x + 4*x^2/2! + 22*x^3/3! + 155*x^4/4! + 1333*x^5/5! + 13541*x^6/6! + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..418
Programs
-
Maple
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end: a:= n-> add(abs(Stirling1(n, k))*H(k)*k!, k=1..n): seq(a(n), n=0..23); # Alois P. Heinz, Jun 21 2018
-
Mathematica
nmax = 21; CoefficientList[Series[-Log[1 + Log[1 - x]]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Abs[StirlingS1[n, k]] HarmonicNumber[k] k!, {k, 0, n}], {n, 0, 21}]
Formula
a(n) = Sum_{k=1..n} |Stirling1(n,k)|*H(k)*k!, where H(k) is the k-th harmonic number.
a(n) ~ sqrt(2*Pi) * log(n) * n^(n + 1/2) / (exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 23 2018