cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302655 Number of minimal total dominating sets in the n-path graph.

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 4, 8, 9, 10, 16, 21, 25, 36, 49, 60, 81, 112, 144, 189, 256, 336, 441, 592, 784, 1029, 1369, 1820, 2401, 3182, 4225, 5586, 7396, 9815, 12996, 17200, 22801, 30210, 40000, 53001, 70225, 93000, 123201, 163240, 216225, 286416, 379456, 502665
Offset: 1

Views

Author

Eric W. Weisstein, Apr 11 2018

Keywords

Crossrefs

Row 1 of A303118.

Programs

  • Mathematica
    Table[If[Mod[n, 2] == 0, (RootSum[-1 - # + #^3 &, #^(n/2 + 5) (5 - 6 # + 4 #^2) &]/23)^2, (RootSum[-1 + # - 2 #^2 + #^3 &, #^((n - 1)/2) (4 - 2 # + 5 #^2) &] + RootSum[-1 + #^2 + #^3 &, #^((n - 1)/2) (-5 + 6 # + 3 #^2) &])/23], {n, 50}]
    LinearRecurrence[{0, 0, 1, 1, 1, 1, 0, -1, -1}, {0, 1, 2, 1, 2, 4, 3, 4, 8}, 50]
    CoefficientList[Series[(x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - 2 x^6 - x^7))/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9), {x, 0, 50}], x]
  • PARI
    concat([0],Vec(x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9) + O(x^50))) \\ Andrew Howroyd, Apr 15 2018

Formula

From Andrew Howroyd, Apr 15 2018: (Start)
a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) - a(n-8) - a(n-9) for n > 9.
G.f.: x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9).
a(2*n) = A000931(n+5)^2. (End)

Extensions

Terms a(20) and beyond from Andrew Howroyd, Apr 15 2018