A302696 Numbers whose prime indices (with repetition) are pairwise coprime. Nonprime Heinz numbers of integer partitions with pairwise coprime parts.
1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 44, 46, 48, 51, 52, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 74, 76, 77, 80, 82, 85, 86, 88, 92, 93, 94, 95, 96, 102, 104, 106, 110, 112, 116, 118, 119, 120, 122, 123, 124, 128, 132
Offset: 1
Keywords
Examples
Sequence of integer partitions with pairwise coprime parts begins: (), (1), (11), (21), (111), (31), (211), (41), (32), (1111), (311), (51), (2111), (61), (411), (321). Missing from this list are: (2), (3), (4), (22), (5), (6), (7), (221), (8), (42), (9), (33), (222).
Links
Crossrefs
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; if nops(F)=1 then if F[1][1] = 2 then return true else return false fi fi; if ormap(t -> t[2]>1 and t[1] <> 2, F) then return false fi; F:= map(t -> numtheory:-pi(t[1]), F); ilcm(op(F))=convert(F,`*`) end proc: select(filter, [$1..200]); # Robert Israel, Sep 10 2020
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[200],Or[#===1,CoprimeQ@@primeMS[#]]&]
-
PARI
isA302696(n) = if(isprimepower(n),!(n%2), if(!issquarefree(n>>valuation(n,2)), 0, my(pis=apply(primepi,factor(n)[,1])); (lcm(pis)==factorback(pis)))); \\ Antti Karttunen, Dec 06 2021
Extensions
Clarification (with repetition) added to the definition by Antti Karttunen, Dec 06 2021
Comments