A302749 Number of maximal matchings in the n-path complement graph.
1, 1, 1, 2, 6, 11, 41, 77, 365, 694, 3984, 7639, 51499, 99343, 769159, 1490474, 13031514, 25341713, 246925295, 481540391, 5173842311, 10113069526, 118776068256, 232612909297, 2964697094281, 5815557347521, 79937923931761, 157024987610282, 2315462770608870, 4553838477539219
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
- Eric Weisstein's World of Mathematics, Path Complement Graph
Programs
-
Mathematica
Table[If[Mod[n, 2] == 0, (n - 1)!! (Hypergeometric1F1[1 - n/2, 1 - n, -2] + Hypergeometric1F1[-n/2, -n, -2]), (2^-Floor[n/2] n! Hypergeometric1F1[-Floor[n/2], -n, -2])/Floor[n/2]!], {n, 30}]
-
PARI
b(n)=(2*n)!/(2^n*n!); a(n)=sum(k=0, n\2, if(n%2,1,(1-k))*(-1)^k*binomial(n-k,k)*b((n+1)\2-k)) \\ Andrew Howroyd, Apr 15 2018
Formula
a(2n+1) = A302750(2n+1), a(2n) = Sum_{k=0..n} (1-k)*(-1)^k*binomial(2*n-k,k)*(2*(n-k)-1)!!. - Andrew Howroyd, Apr 15 2018
Extensions
a(17)-a(30) from Andrew Howroyd, Apr 15 2018