cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351588 Number of minimal edge covers in the n-path complement graph.

Original entry on oeis.org

0, 0, 0, 1, 7, 34, 174, 1079, 7055, 48796, 366180, 2928387, 24726556, 220572828, 2071469527, 20393131971, 209934610376, 2254860549906, 25210893460938, 292826210789807, 3527105947667676, 43985152403166462, 567048383126842506, 7546842245268945427, 103560659196050026908
Offset: 1

Views

Author

Eric W. Weisstein, Feb 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n)={sum(i=0, n\2, sum(j=0, (n-2*i)\3, my(r=n-2*i-3*j, g=exp(x + O(x*x^r))); (-1)^i*binomial(i+j,i)*binomial(n-i-2*j,i+j)*(r)!*polcoef((2*g-1)^i*exp(j*x -x - x^2/2 + x*g), r)))} \\ Andrew Howroyd, Jun 14 2025

Formula

a(n) = Sum_{i=0..floor(n/2)} Sum{j=0..floor((n-2*i)/3)} (-1)^i * binomial(i+j,i) * binomial(n-i-2*j,i+j) * (n-2*i-3*j)! * [x^(n-2*i-3*j)] ((2*exp(x)-1)^i * exp(x)^j * exp(-x - x^2/2 + x*exp(x))). - Andrew Howroyd, Jun 14 2025

Extensions

a(9)-a(12) from Andrew Howroyd, Feb 21 2022
a(13) onwards from Andrew Howroyd, Jun 14 2025

A302750 Number of maximum matchings in the n-path complement graph.

Original entry on oeis.org

1, 1, 1, 1, 6, 5, 41, 36, 365, 329, 3984, 3655, 51499, 47844, 769159, 721315, 13031514, 12310199, 246925295, 234615096, 5173842311, 4939227215, 118776068256, 113836841041, 2964697094281, 2850860253240, 79937923931761, 77087063678521, 2315462770608870, 2238375706930349
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2018

Keywords

Comments

Except for n=2, the number of edges in a maximum matching is floor(n/2). - Andrew Howroyd, Apr 15 2018

Crossrefs

Cf. A170941 (matchings), A302749 (maximal matchings).

Programs

  • Mathematica
    Join[{1, 1}, Table[(2^-Floor[n/2] n! Hypergeometric1F1[-Floor[n/2], -n, -2])/Floor[n/2]!, {n, 3, 30}]]
  • PARI
    b(n)=(2*n)!/(2^n*n!);
    a(n)=if(n==2, 1, sum(k=0, n\2, (-1)^k*binomial(n-k,k)*b((n+1)\2-k))); \\ Andrew Howroyd, Apr 15 2018

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*(2*(ceiling(n/2)-k)-1)!! for n > 2. - Andrew Howroyd, Apr 15 2018
a(n) = 2^-floor(n/2)*n!*hypergeometric1f1(-floor(n/2), -n, -2)/(floor(n/2))! for n > 2. - Eric W. Weisstein, Apr 16 2018

Extensions

a(17)-a(30) from Andrew Howroyd, Apr 15 2018
Showing 1-2 of 2 results.