cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351587 Number of minimal edge covers in the n-cycle complement graph.

Original entry on oeis.org

0, 1, 5, 25, 133, 859, 5781, 40923, 313005, 2541251, 21725314, 195840223, 1855631053, 18408258491, 190764140901, 2060930694871, 23161639995126, 270260975209117, 3268719600517612, 40914280736043141, 529233440391510248, 7065125832189189159, 97221637266999732570
Offset: 3

Views

Author

Eric W. Weisstein, Feb 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n)={sum(i=0, n\2, sum(j=0, (n-2*i)\3, my(r=n-2*i-3*j, g=exp(x + O(x*x^r))); (-1)^i*n*((n-i-2*j-1)!/(i!*j!))*polcoef((2*g-1)^i*exp(j*x -x - x^2/2 + x*g), r)))} \\ Andrew Howroyd, Jun 14 2025

Formula

a(n) = Sum_{i=0..floor(n/2)} Sum{j=0..floor((n-2*i)/3)} (-1)^i * n * ((n-i-2*j-1)! / (i!*j!)) * [x^(n-2*i-3*j)] ((2*exp(x)-1)^i * exp(x)^j * exp(-x - x^2/2 + x*exp(x))). - Andrew Howroyd, Jun 14 2025

Extensions

a(9)-a(12) from Andrew Howroyd, Feb 21 2022
a(13) onwards from Andrew Howroyd, Jun 14 2025

A351589 Number of minimal edge covers in the n-cocktail party graph.

Original entry on oeis.org

0, 2, 74, 2228, 100494, 6014932, 453143662, 41921209920, 4639656895118, 603202689990836, 90714189165482310, 15583340701180474312, 3025677781064563172326, 658038493760685537784572, 159065982382639942877853134, 42449055613405195868802686816
Offset: 1

Views

Author

Eric W. Weisstein, Feb 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n)={my(x=x+O(x^(2*n+1)), p=exp(-x - x^2/2 + x*exp(x)), q=2*exp(x) - 1); sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(2*k)!*polcoef(q^(n-k)*p, 2*k))} \\ Andrew Howroyd, Feb 21 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (2*k)! * [x^(2*k)] B(n-k,x), where B(k,x) = (2*exp(x) - 1)^k * exp(-x - x^2/2 + x*exp(x)). - Andrew Howroyd, Feb 21 2022

Extensions

Terms a(5) and beyond from Andrew Howroyd, Feb 21 2022
Showing 1-2 of 2 results.