cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302760 Number of total dominating sets in the n-antiprism graph.

Original entry on oeis.org

3, 11, 54, 179, 648, 2414, 8809, 32195, 117945, 431696, 1579955, 5783294, 21168592, 77482521, 283608249, 1038086883, 3799689944, 13907938601, 50906985592, 186333942984, 682034858839, 2496440225499, 9137676323347, 33446476209566, 122423549667123
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2018

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 14 2018

Crossrefs

Programs

  • Magma
    I:=[3,11,54,179,648,2414,8809]; [n le 7 select I[n] else 3*Self(n-1)+Self(n-2)+6*Self(n-3)-3*Self(n-4)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 15 2018
  • Mathematica
    CoefficientList[Series[(3 + 2 x + 18 x^2 - 12 x^3 + 7 x^6)/(1 - 3 x - x^2 - 6 x^3 + 3 x^4 - x^7), {x, 0, 24}], x] (* Michael De Vlieger, Apr 14 2018 *)
    LinearRecurrence[{3, 1, 6, -3, 0, 0, 1}, {3, 11, 54, 179, 648, 2414, 8809}, 20] (* Vincenzo Librandi, Apr 15 2018 *)
    Table[RootSum[-1 + 3 #^3 - 6 #^4 - #^5 - 3 #^6 + #^7 &, #^n &], {n, 30}] (* Eric W. Weisstein, Apr 16 2018 *)
    RootSum[-1 + 3 #^3 - 6 #^4 - #^5 - 3 #^6 + #^7 &, #^Range[30] &] (* Eric W. Weisstein, Apr 16 2018 *)
  • PARI
    Vec((3 + 2*x + 18*x^2 - 12*x^3 + 7*x^6)/(1 - 3*x - x^2 - 6*x^3 + 3*x^4 - x^7) + O(x^25)) \\ Andrew Howroyd, Apr 14 2018
    

Formula

From Andrew Howroyd, Apr 14 2018: (Start)
a(n) = 3*a(n-1) + a(n-2) + 6*a(n-3) - 3*a(n-4) + a(n-7) for n > 7.
G.f.: x*(3 + 2*x + 18*x^2 - 12*x^3 + 7*x^6)/(1 - 3*x - x^2 - 6*x^3 + 3*x^4 - x^7).
(End)

Extensions

a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Apr 14 2018