A302762 Number of minimal total dominating sets in the n-Andrásfai graph.
1, 5, 14, 44, 112, 238, 449, 782, 1287, 2030, 3096, 4592, 6650, 9430, 13123, 17954, 24185, 32118, 42098, 54516, 69812, 88478, 111061, 138166, 170459, 208670, 253596, 306104, 367134, 437702, 518903, 611914, 717997, 838502, 974870, 1128636, 1301432, 1494990, 1711145
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Andrásfai Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
Join[{1, 5}, Table[(-720 + 2732 n - 1880 n^2 + 505 n^3 - 40 n^4 + 3 n^5)/120, {n, 3, 20}]] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 5, 14, 44, 112, 238, 449, 782}, 20] CoefficientList[Series[(1 - x - x^2 + 15 x^3 - 27 x^4 + 15 x^5 + 2 x^6 - x^7)/(-1 + x)^6, {x, 0, 20}], x]
Formula
a(n) = (-720 + 2732*n - 1880*n^2 + 505*n^3 - 40*n^4 + 3*n^5)/120 for n > 2.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 8.
G.f.: x*(1 - x - x^2 + 15*x^3 - 27*x^4 + 15*x^5 + 2*x^6 - x^7)/(-1 + x)^6.
Extensions
a(8)-a(20) from Andrew Howroyd, Apr 15 2018